You are viewing the site in preview mode

Skip to main content

Table 3 Radiomics features retained by LASSO Cox regression

From: A CT-based radiomics model for predicting progression-free survival in patients with epithelial ovarian cancer

Radiomics features

Coefficients

original_glszm_LargeAreaHighGrayLevelEmphasis

0.001542914

wavelet-HLL_glcm_Correlation

0.002961573

wavelet-LHH_glszm_GrayLevelNonUniformityNormalized

0.007430689

wavelet-HHH_glszm_GrayLevelNonUniformity

-0.00834827

wavelet-HLL_firstorder_Skewness

0.009159909

wavelet-LHL_glcm_Idmn

0.03540515

wavelet-LHH_glszm_SmallAreaLowGrayLevelEmphasis

0.049581306

wavelet-HHH_firstorder_Mean

0.078204555

wavelet-LHL_gldm_DependenceVariance

0.103301648

wavelet-HHH_glszm_ZoneEntropy

0.161251759

wavelet-HHH_ngtdm_Strength

0.202476403

wavelet-HHH_glcm_Imc1

0.270314762

  1. LASSO, least absolute shrinkage and selection operator