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Abstract
Purpose  Cholangiocyte phenotype hepatocellular carcinoma (HCC) is highly invasive. This study aims to develop 
and validate an optimal machine learning model to predict cholangiocyte phenotype HCC based on T1 mapping 
gadoxetic acid-enhanced MRI and to implement individual applications via the Shapley Additive explanation (SHAP).

Methods  We included 180 patients with histologically confirmed HCC from two institutions. Clinical and MRI 
imaging features were screened for predicting cholangiocyte phenotype hepatocellular carcinoma using Least 
Absolute Shrinkage and Selection Operator (LASSO) and the logistic regression analysis. Five machine learning models 
were constructed based on these features. A Kaplan–Meier survival analysis aims to compare prognostic differences 
between cholangiocyte phenotype-positive HCC groups and classical (cholangiocyte phenotype-negative) HCC 
groups, and was conducted to explore the prognostic information of the optimal model.

Results  The most significant clinicoradiological features, including the platelet-to-lymphocyte ratio (PLR), tumor 
capsule, target sign on hepatobiliary phase (HBP), and T1 relaxation time of 20 min (T1rt-20 min), were selected to 
construct the prediction model. Finally, we selected the eXtreme Gradient Boosting (XGBoost) model as the optimal 
predictive model, which achieved AUCs of 0.835, 0.830, 0.816 and 0.776 in training, internal validation, external 
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Introduction
Hepatocellular carcinoma (HCC) is a common malig-
nancy worldwide. Complex pathological phenotypes and 
tumor heterogeneity are the main causes of poor prog-
nosis in patients with HCC [1, 2]. HCC expressing cyto-
keratin (CK) 19 or CK7 are considered cholangiocyte 
phenotypes with highly aggressive behavior. Compared 
to classical HCC, cholangiocyte phenotype HCC exhib-
its higher lymph node metastasis rate, and higher risk 
of vascular invasion, which are closely related to poor 
prognosis [3–5]. Therefore, the preoperative identifying 
cholangiocyte phenotype HCC provides a basis for the 
selection of surgical strategies and formulation of adju-
vant treatments, which is important for the evaluation of 
recurrence and prognosis. However, invasive biopsy may 
result in complications. Moreover, owing to tumor het-
erogeneity, the degree of marker expression in different 
biopsy regions may be underestimated or overestimated 
[6]. Therefore, it is necessary to develop a non-invasive 
method to identifying cholangiocyte phenotype HCC.

T1 mapping, a non-invasive and quantitative method 
for analyzing T1 values of tissues, is performed by fit-
ting a series of images collected at different time points 
during the T1 relaxation time recovery process [7]. The 
T1 relaxation time measured on T1 mapping can reflect 
the intrinsic characteristics of the organization and is 
not affected by the scanning sequence parameters [8]. 
It can be combined with gadoxetic acid-enhanced MRI 
efficiently to accurately and objectively reflect changes 
in liver cells absorbing gadoxetic acid, thereby reflecting 
the biological characteristics of HCC [9]. Previous stud-
ies have evaluated the pathological differentiation [10], 
microvascular invasion [11], and resection recurrence of 
HCC [12]. However, there is currently no research has 
used gadoxetic acid-enhanced MRI combined with T1 
mapping to predict cholangiocyte phenotype HCC.

Machine learning has great potential in medical 
research and prognostic model construction. Due to the 
varying logic and complexity of different machine learn-
ing algorithms, their model results are often difficult to 
interpret, leading to the “black-box” problem [13]. Pre-
vious studies have focused on the accuracy of model 

prediction, neglecting their interpretability and limit-
ing their clinical application; therefore, interpretable 
machine learning algorithms have become the current 
focus of research [14]. SHapley Additive exPlanation 
(SHAP) originated from the cooperative game theory. It 
can explain the “black-box” model at the global and local 
levels and interpret the predicted value of the model as 
the sum of the contribution values of each input feature, 
that is, the Shapley value [15]. Machine learning com-
bined with SHAP can provide an explicit explanation of 
individualized prediction and provide physicians with an 
intuitive understanding of the influence of key features 
in the model [16, 17]. To the best of our knowledge, only 
a few studies have focused on the interpretable machine 
learning prediction of cholangiocyte phenotype HCC 
using SHAP.

Therefore, this study aimed to develop and validate an 
interpretable machine-learning model based on clinico-
radiological features to identifying cholangiocyte phe-
notype HCC. SHAP was used to intuitively explain the 
predictive results by comparing the predictive perfor-
mance of the five machine learning models to ultimately 
determine the optimal model, guiding the clinical devel-
opment of personalized diagnosis and treatment plans.

Materials and methods
Participants
This study was conducted in accordance with the prin-
ciples of the Declaration of Helsinki and approved by the 
Medical Ethics Committee of Shunde Hospital, Southern 
Medical University. The requirement to obtain informed 
consent was waived because of the observational design 
of the study. Preoperative T1 mapping gadoxetic acid-
enhanced MRI and clinical data were retrospectively col-
lected from two institutions between January 2019 and 
May 2022. Data from Institution I were designated as the 
training and internal validation cohort, while data from 
Institution II served as the external validation cohort. 
Additionally, patients from Institution I were prospec-
tively enrolled from June 2022 to December 2022 to 
form the prospective validation cohort. The training and 
internal validation cohorts were utilized as retrospective 

validation, and prospective validation cohorts, respectively, for visual analysis via SHAP, in which T1rt-20 min made 
a significant contribution. Survival analysis showed a statistically significant difference in relapse-free survival (RFS) 
between cholangiocyte phenotype-positive HCC groups and classical HCC groups from institution I (hazard ratio [HR] 
1.994; 95% CI, 1.059–3.758; P = 0.027), and the construction XGBoost model can be used to stratify RFS according to 
prognosis (HR, 1.986; 95% CI, 1.061–3.717; P = 0.029).

Conclusion  The machine learning model utilizing T1 mapping gadoxetic acid-enhanced MRI demonstrates 
significant potential in identifying cholangiocyte phenotype HCC. Furthermore, personalized prediction is enhanced 
through the application of SHAP, providing valuable insights to support clinical decision-making processes.

Keywords  Cholangiocyte phenotype, Hepatocellular carcinoma, Magnetic resonance imaging, Machine learning
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datasets, whereas the external validation cohort also 
comprised retrospective data. The prospective validation 
cohort, however, was derived from prospectively col-
lected data. The data were reviewed on June 1, 2023.

The inclusion criteria were as follows: (a) patients 
with pathologically confirmed HCC and CK19 sta-
tus; (b) underwent curative hepatic resection; (c) those 
with preoperative T1 mapping gadoxetic acid-enhanced 
MRI imaging. The exclusion criteria were as follows: (a) 
patients who did not receive curative resection; (b) those 
with a lack of complete clinical data or whose MRI and 
pathological images were unavailable; (c) those who 
received previous treatment; (d) those with imaging 
data of poor quality with obvious artifacts; and (e) those 
who underwent MRI examination more than one month 
before surgery. The patient recruitment process and 
study design are shown in Fig. 1.

Clinical data collection
Clinical and laboratory data of the patients were 
recorded, including sex, age, hepatitis, levels of alpha-
fetoprotein (AFP, µg/L), alanine aminotransferase 
(ALT, U/L), aspartate aminotransferase (AST, U/L), and 
gamma-glutamyltransferase (GGT, U/L), neutrophil-
to-lymphocyte ratio (NLR), platelet-to-lymphocyte 

ratio (PLR), Child-Pugh classification, and the modus 
operandi.

MRI examination
All patients from institutions I and II were underwent 
scanning using the Magnetom Skyra, Lumina, or Verio 
3.0T MRI system (Siemens Healthcare Sector, Erlangen, 
Germany) equipped with a dedicated abdominal coil. All 
patients fasted for more than 6 h and underwent breath-
ing training before the scan. The patients were instructed 
to adopt a head-advanced supine position, with exami-
nations ranging from the upper edge to the lower edge 
of the liver. The standard imaging protocol consisted of 
T1-weighted imaging (T1WI), T2-weighted imaging 
(T2WI), diffusion-weighted imaging (DWI), and T1 map-
ping. Gadoxetic acid was used for enhanced MRI (Primo-
vist; Bayer Schering Pharma AG, Berlin, Germany, 0.1 
mmol/kg), the flow rate was set at 1.0 mL/s, and 30 mL 
physiological saline was then used for rinsing. Multi-
phase enhancements, including the arterial, portal, equi-
librium, and hepatobiliary phases (HBP), were obtained 
at 20–30 s, 60–90 s, 150–180 s, and 20 min, respectively. 
T1 mapping included pre-enhancement and enhance-
ment after 20 min. The specific scanning parameters are 
listed in Supplement Table 1.

Fig. 1  Patient recruitment and study design
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MRI feature analysis
The MRI qualitative features were independently evalu-
ated by two abdominal radiologists (with 5 and 10 years 
of experience, respectively) from institution I who were 
blinded to the clinical and pathological information. In 
case of conflicting opinions, a third senior abdominal 
radiologist (with 15 years of experience) would partici-
pate in the discussion for a consensus. In patients with 
multiple tumors, the largest tumor was analyzed. The fol-
lowing MRI image features were evaluated (Supplement 
Method 1 and Supplement Fig.  1): (1) tumor margin; 
(2) tumor capsule; (3) cystic or necrosis portion; (4) fat 
deposition; (5) signal intensity on T2WI; (6) hemorrhage; 
(7) target sign on DWI; (8) target sign on HBP; (9) arte-
rial rim enhancement; (10) peritumoral enhancement; 
(11) peritumoral hypointensity; and (12) satellite nodules.

Quantitative MRI features were measured by an 
abdominal radiologist (with 5 years of experience) from 
institution I using the RadiAnt DICOM Viewer 2022.1.1 
software (​h​t​t​p​​s​:​/​​/​w​w​w​​.​r​​a​d​i​​a​n​t​​v​i​e​w​​e​r​​.​c​o​m). Tumor size 
was defined as the maximum tumor diameter on the 
axial or coronal HBP. The tumor region of interest (ROI) 
was then drawn to select the largest slice of the tumor on 
the apparent diffusion coefficient (ADC) and T1 mapping 
to avoid blood vessels. The ROI was set as the maximum 
cross-sectional area of the tumor. Another abdominal 
radiologist (with 10 years of experience) from institu-
tion I edited and confirmed the ROIs. The average of 
the results measured by the two radiologists was used as 
the final value, and the interclass correlation coefficient 
(ICC) was evaluated. The ADC value, T1 relaxation time 
of pre-enhancement (T1rt-pre), and T1 relaxation time of 
20 min after enhancement (T1rt-20 min) were recorded, 
and the reduction rate of T1 relaxation time (rrT1rt) was 
calculated using the following formula: rrT1rt = (T1rt-
pre - T1rt-20 min) / T1rt-pre.

Histopathological examination
All histopathological examinations were conducted by 
two pathologists (with over 5 and 10 years of experience 
in liver pathology) who were blinded to the clinical and 
imaging information. If all of the following criteria are 
met, the pathological diagnosis is HCC with cholangio-
cyte phenotype. (1) microscopic morphological features 
of HCC; (2) positive expression of hepatocyte paraffin 
antigen 1 (HepPar-1), glypican-3 (GPC-3), or glutamine 
synthetase (GS) in tumor cells; and (3) positive expres-
sion of CK19 in tumor cells (≥ 15%) [3]. All patients were 
divided into two groups: cholangiocyte phenotype-posi-
tive HCC groups and classical (cholangiocyte phenotype-
negative) HCC groups. The detailed measurements of 
CK19 are described in the Supplement Method 2.

Model development and validation
The clinical and MRI features were screened using the 
least absolute shrinkage and selection operator (LASSO), 
and the most significant clinicoradiological features were 
obtained through logistic regression analysis with step-
wise selection. A five-fold stratified cross-validation was 
performed. Four groups, accounting for 90% of the total 
sample, formed the training cohort for model construc-
tion, whereas the remaining patients formed the inter-
nal validation cohort to evaluate model performance. 
Stratified sampling ensured that the distribution of the 
patients in the two cohorts was similar to the total sam-
ple to reduce systematic errors caused by the division of 
datasets.

Five machine learning models were constructed based 
on the most significant clinicoradiological features: ran-
dom forest (RF), K-nearest neighbor (KNN), support 
vector machine (SVM), eXtreme Gradient Boosting 
(XGBoost), and logistic regression (LR). The entire pro-
cess was repeated 100 times via bootstrapping to ensure 
model stability; one round of cross-validation is shown 
in Supplement Fig. 2. One external validation cohort and 
one prospective cohort were used to validate the predic-
tion performance.

Explanation of the SHAP algorithm
Through a comprehensive comparison, an optimal 
machine-learning model was obtained, and the model 
results were visualized using SHAP. SHAP is a game-the-
oretic approach for interpreting machine learning model 
predictions by quantifying the contribution of each fea-
ture to the final output. The Shapley algorithm calcu-
lates the Shapley value of each variable in the training 
cohort, explains the relationship between the input vari-
ables and the output results of the model, and improves 
model interpretability. The Shapley value of the input 
variable reflects the contributing weight of the feature in 
the model, and the red and blue colors represent posi-
tive and negative effects, respectively. A schematic of the 
machine learning analysis algorithm for the entire pro-
cess is shown in Fig. 2. The detailed demonstration pro-
cess and the formulas are provided in the Supplement 
explanation.

Follow-up
From institution I, Two patients who were lost to follow-
up, and the remaining 115 patients were followed up by 
ultrasonography, CT, or MRI every 3–6 months after 
surgery until recurrence or final review of the data. The 
Relapse-free survival (RFS) was defined as intrahepatic 
recurrence or distant metastasis, including residual liver 
lesions, and organ, lymph node, and peritoneal metasta-
sis. The RFS rates were recorded. Then, XGBoost models 
were constructed based on the data of the training and 

https://www.radiantviewer.com
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internal validation cohorts. Patients were divided into 
high-risk and low-risk groups based on the best cut-off of 
the XGBoost predicted values.

Statistical analysis
The quantitative data are expressed as means ± standard 
deviations or medians (minimum, maximum range). 
Qualitative data are expressed as numbers and percent-
ages. The ICC was used to evaluate the consistency of 
measurements between the two radiologists (ICC > 0.75: 
good, 0.65–0.75: general, and ICC < 0.65: poor). The pre-
diction efficiency of each model was evaluated using the 
area under the curve (AUC), accuracy, sensitivity, and 
specificity values obtained from the mean receiver oper-
ating characteristic curve. The DeLong test was used to 
compare the differences in AUCs among the different 
models. The confidence intervals (CIs) in this study were 
set to 95%, and P < 0.05 indicated statistically significant 
differences. Survival curves were drawn using the Kaplan 
Meier method and compared using the log rank test. All 
statistical analyses were performed using the SPSS (ver-
sion 25.0) or R (version 3.6.1; http://www.rproject. org) 
software.

Results
Clinical data and MRI features
The clinical data and CT image features of the partici-
pants are shown in Tables  1 and 2. In the training and 
internal validation cohorts, 117 patients with HCC (106 
males, mean age 59.0 ± 10.9 years) were included: 40 
cholangiocyte phenotype-positive HCC patients and 77 

classical HCC patients. In the external validation cohort, 
33 patients with HCC (31 males, mean age 64.8 ± 10.3 
years) were included: 12 cholangiocyte phenotype-
positive HCC patients and 21 classical HCC patients 
patients. Additionally, in the prospective cohort, 30 
patients with HCC (26 males, mean age 59.0 ± 10.9 years) 
were included: 9 cholangiocyte phenotype-positive HCC 
patients and 21 classical HCC patients patients. The ICC 
values for tumor size, ADC, T1rt-pre, and T1rt-20  min 
measured by the two radiologists were shown in Supple-
ment Table 2.

Model development and evaluation
The most significant clinicoradiological features were 
obtained using LASSO and stepwise-selection logistic 
regression analyses. Finally, the PLR, tumor capsule, tar-
get sign on HBP, and T1rt-20 min were selected to con-
struct the prediction model. The cut-off value was 797 ms 
of T1rt-20 min.

The prediction efficiencies of the RF, KNN, SVM, 
XGBoost, and LR models are listed in Table  3. Com-
parison of prediction performance (AUCs) of machine 
learning models, XGBoost performed slightly better than 
others in the cohorts, as shown in Supplement Table  3, 
which achieved AUCs of 0.835, 0.830, 0.816 and 0.776 
in training, internal validation, external validation, and 
prospective validation cohorts, respectively. Finally, we 
chose the XGBoost model as the optimal model.

Fig. 2  Algorithm schematic of machine learning analysis for the entire process. The most significant features were screened by LASSO and logistic 
regression analysis. Five different machine learning models were constructed by these features. To obtain the best prediction model, the prediction per-
formance of the models was compared by the mean ROC, and the SHAP was used to analyze the diagnostic process of the best model
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Clinical application by SHAP
We calculated the overall and individual Shapley values of 
the XGBoost model, which can be helpful for its interpre-
tation and clinical application. For overall prediction, the 
SHAP bar graph (Fig. 3A) shows the degree of influence 
of the four most significant features on the final predicted 
probability, and the absolute average Shapley values are 
0.0431, 0.0445, 0.0523, and 0.0704, respectively, among 
which T1rt-20  min has the greatest impact. The SHAP 
scatterplot (Fig.  3B) shows the positive and negative 
effects of each feature on the prediction probability using 
different colors. In predicting the probability of cholan-
giocyte phenotype-positive HCC, PLR, target sign on 
HBP, and T1rt-20 min had a positive effect, whereas the 

tumor capsule had a negative effect. The results of the 
SHAP summary effort plot (Fig.  3C) show the positive 
and negative effects of each feature on predictive prob-
ability in all cases. The SHAP decision plot (Fig.  3D) 
shows the transition path of a clinical sample’s predic-
tion from the baseline to the final outcome, allowing cli-
nicians to identify diagnostic outliers or critical decision 
boundaries. For individual predictions, Figs.  4A-F show 
six examples of accurately predictions. The SHAP effort 
plot shows both the positive and negative effects of each 
feature on predictive outcomes in a single case. The base 
value represents the basic prediction probability of the 
XGBoost model and f (x) represents the final prediction 
probability of the optimal model.

Table 1  Clinical data in different cohort
Characteristics Training and internal validation 

Cohort (n = 117)
External validation cohort
(n = 33)

Prospective validation cohort
(n = 30)

cholangiocyte 
phenotype (-)
(N = 77)

cholangiocyte 
phenotype (+)
(N = 40)

cholangiocyte 
phenotype (-)
(N = 21)

cholangiocyte 
phenotype (+)
(N = 12)

cholangiocyte 
phenotype (-)
(N = 21)

cholangio-
cyte pheno-
type (+)
(N = 9)

Sex
  Female 7 (9.1%) 4 (10.0%) 1 (4.8%) 1 (8.3%) 3 (14.3%) 1 (11.1%)
  Male 70 (90.9%) 36 (90.0%) 20 (95.2%) 11 (91.7%) 18 (85.7%) 8 (88.9%)
Age
  Mean ± SD 57.3 ± 10.2 55.4 ± 11.1 50.7 ± 8.08 50.8 ± 12.6 61.2 ± 14.6 59.3 ± 12.2
Hepatitis
  Absent 12 (15.6%) 6 (15.0%) 3 (14.3%) 2 (16.7%) 4 (19.0%) 3 (33.3%)
  Present 65 (84.4%) 34 (85.0%) 18 (85.7%) 10 (83.3%) 17 (81.0%) 6 (66.7%)
AFP (ug/L)
  ≤ 20 45 (58.4%) 12 (30.0%) 12 (57.1%) 4 (33.3%) 13 (61.9%) 3 (33.3%)
  > 20 32 (41.6%) 28 (70.0%) 9 (42.9%) 8 (66.7%) 8 (38.1%) 6 (66.7%)
ALT (U/L)
  Median
(Min, Max)

31.0 (10.0, 241) 37.0 (14.0, 241) 34.0 (10.0, 259) 34.0 (19.0, 241) 26.0 (8.00, 134) 24.0 (8.00, 
237)

AST (U/L)
  Median
(Min, Max)

36.0 (14.0, 169) 41.0 (18.0, 287) 36.0 (14.0, 202) 43.0 (21.0, 287) 33.0 (21.0, 73.0) 44.0 (21.0, 
181)

GGT (U/L)
  Median
(Min, Max)

49.0 (12.0, 1060) 85.0 (13.0, 735) 71.0 (20.0, 611) 92.5 (21.0, 735) 65.0 (16.0, 366) 50.0 (31.0, 
449)

NLR
  Median
(Min, Max)

1.87 (0.480, 7.30) 2.62 (0.74, 14.3) 2.00 (1.12, 5.42) 3.65 (0.740, 14.3) 2.77 (1.03, 49.7) 2.30 (1.49, 
9.57)

PLR
  Median
(Min, Max)

103 (44.7, 251) 120 (31.7, 1650) 105 (60.7, 236) 130 (47.8, 1650) 96.2 (64.8, 222) 111 (49.1, 
228)

Child-Pugh
  A 66 (85.7%) 33 (82.5%) 17 (81.0%) 9 (75.0%) 20 (95.2%) 6 (66.7%)
  B 11 (14.3%) 7 (17.5%) 4 (19.0%) 3 (25.0%) 1 (4.8%) 3 (33.3%)
Modus operandi
  Non-anatomic 33 14 9 3 9 3
  Anatomic 44 26 12 9 12 6
Notes: Continuous variables with normal distribution are presented as mean ± standard deviation (SD) and those with abnormal distribution as median (minimum, 
maximum range). Categorical variables are presented as N (%). AFP, alpha-fetoprotein, ALT, alanine aminotransferase, AST, aspartate aminotransferase, GGT, gamma-
glutamyl transferase, NLR, neutrophil-to-lymphocyte ratio, PLR, platelet to lymphocyte ratio
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Characteristics Training cohort and internal valida-
tion Cohort (n = 117)

External validation cohort
(n = 33)

Prospective validation cohort
(n = 30)

cholangiocyte 
phenotype (-)
(N = 77)

cholangiocyte 
phenotype (+)
(N = 40)

cholangiocyte 
phenotype (-)
(N = 21)

cholangiocyte 
phenotype (+)
(N = 12)

cholangiocyte 
phenotype (-)
(N = 21)

cholangio-
cyte pheno-
type (+)
(N = 9)

Tumor margin
  Absent 35 (45.5%) 8 (20.0%) 7 (33.3%) 2 (16.7%) 10 (47.6%) 1 (11.1%)
  Present 42 (54.5%) 32 (80.0%) 14 (66.7%) 10 (83.3%) 11 (52.4%) 8 (88.9%)
Tumor capsule
  Absent 31 (40.3%) 5 (12.5%) 5 (23.8%) 1 (8.3%) 11 (52.4%) 3 (33.3%)
  Present 46 (59.7%) 35 (87.5%) 16 (76.2%) 11 (91.7%) 10 (47.6%) 6 (66.7%)
Cystic or necrosis portion
  Absent 52 (67.5%) 18 (45.0%) 8 (38.1%) 4 (33.3%) 12 (57.1%) 6 (66.7%)
  Present 25 (32.5%) 22 (55.0%) 13 (61.9%) 8 (66.7%) 9 (42.9%) 3 (33.3%)
Fat deposition
  Absent 66 (85.7%) 34 (85.0%) 18 (85.7%) 10 (83.3%) 18 (85.7%) 8 (88.9%)
  Present 11 (14.3%) 6 (15.0%) 3 (14.3%) 2 (16.7%) 3 (14.3%) 1 (11.1%)
Signal intensity on T2WI
  Absent 39 (50.6%) 15 (37.5%) 4 (19.0%) 4 (33.3%) 10 (47.6%) 5 (55.6%)
  Present 38 (49.4%) 25 (62.5%) 17 (81.0%) 8 (66.7%) 11 (52.4%) 4 (44.4%)
Hemorrhage
  Absent 56 (72.7%) 30 (75.0%) 12 (57.1%) 9 (75.0%) 15 (71.4%) 7 (77.8%)
  Present 21 (27.3%) 10 (25.0%) 9 (42.9%) 3 (25.0%) 6 (28.6%) 2 (22.2%)
Target sign on DWI
  Absent 57 (74.0%) 24 (60.0%) 15 (71.4%) 9 (75.0%) 17 (81.0%) 9 (100%)
  Present 20 (26.0%) 16 (40.0%) 6 (28.6%) 3 (25.0%) 4 (19.0%) 0 (0%)
Target sign on HBP
  Absent 69 (89.6%) 27 (67.5%) 21 (100%) 9 (75.0%) 18 (85.7%) 3 (33.3%)
  Present 8 (10.4%) 13 (32.5%) 0 (0%) 3 (25.0%) 3 (14.3%) 6 (66.7%)
Arterial rim enhancement
  Absent 43 (55.8%) 14 (35.0%) 6 (28.6%) 2 (16.7%) 10 (47.6%) 4 (44.4%)
  Present 34 (44.2%) 26 (65.0%) 15 (71.4%) 10 (83.3%) 11 (52.4%) 5 (55.6%)
Peritumoral enhancement
  Absent 49 (63.6%) 17 (42.5%) 9 (42.9%) 3 (25.0%) 12 (57.1%) 3 (33.3%)
  Present 28 (36.4%) 23 (57.5%) 12 (57.1%) 9 (75.0%) 9 (42.9%) 6 (66.7%)
Peritumoral hypointensity
  Absent 52 (67.5%) 17 (42.5%) 11 (52.4%) 4 (33.3%) 16 (76.2%) 5 (55.6%)
  Present 25 (32.5%) 23 (57.5%) 10 (47.6%) 8 (66.7%) 5 (23.8%) 4 (44.4%)
Satellite nodules
  Absent 59 (76.6%) 21 (52.5%) 15 (71.4%) 6 (50.0%) 20 (95.2%) 6 (66.7%)
  Present 18 (23.4%) 19 (47.5%) 6 (28.6%) 6 (50.0%) 1 (4.8%) 3 (33.3%)
Tumor size
  Median (Min, Max) 36.0 (11.9, 117) 39.9 (14.1, 132) 62.3 (17.7, 158) 57.2 (17.2, 125) 40.0 (11.2, 120) 34.3 (26.2, 

89.9)
ADC
  Median (Min, Max) 1030 (462, 2140) 956 (628, 1910) 904 (656, 1550) 957 (798, 1530) 845 (674, 1410) 892 (752, 

1200)
T1rtpre
  Mean ± SD 1310 ± 250 1440 ± 275 1500 ± 288 1550 ± 345 1280 ± 264 1430 ± 229
T1rt20min
  Median (Min, Max) 790 (420, 1260) 847 (495, 1410) 877 (630, 1440) 969 (759, 1410) 747 (340, 991) 812 (550, 

1410)

Table 2  MRI image features in different cohort
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Prognostic analysis of the optimal model
115 patients were followed up from institution I. Two 
patients who were lost to follow-up. The RFS rate was 
36.5% (42/115). Statistically significant differences in RFS 
rates between cholangiocyte phenotype-positive HCC 
and classical HCC patients were observed (hazard ratio 
[HR], 1.994; 95% confidence interval [CI], 1.059–3.758; 
P = 0.027) (Fig. 5A).

In the optimal models, 117 patients with HCC were 
included. To evaluate the prognostic stratification value 
of the model, patients were divided into predicted chol-
angiocyte phenotype negative (low-risk < 0.5) and chol-
angiocyte phenotype positive (high-risk > 0.5) groups 
based on the cut-off value by maximizing their Youden 

index. Statistically significant differences in RFS rates 
between XGBoost (high-risk) and XGBoost (low-risk) 
patients were observed (HR, 1.986; 95% CI, 1.061–3.717; 
P = 0.029) (Fig. 5B).

Discussion
In this study, the four most significant predictive features 
i.e., PLR, tumor capsule, target sign on HBP, and T1rt-
20 min, were screened using LASSO and stepwise-selec-
tion logistic regression, and five machine learning models 
were compared to ultimately determine the model with 
optimal prediction performance. SHAP was used to visu-
ally interpret the models from both the overall and indi-
vidual perspectives, and the predictive performances of 

Table 3  Prediction performance of machine learning models
AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)

RF
  Training cohort 0.808(0.806–0.810) 0.774(0.771–0.777) 0.700(0.693–0.707) 0.812(0.805–0.819)
  Internal validation cohort 0.709(0.699–0.719) 0.739(0.730–0.748) 0.698(0.681–0.715) 0.760(0.742–0.778)
  External validation cohort 0.829(0.827–0.831) 0.804(0.799–0.808) 0.712(0.700-0.723) 0.856(0.844–0.868)
  Prospective validation 0.813(0.810–0.815) 0.831(0.828–0.834) 0.762(0.757–0.767) 0.860(0.855–0.865)
KNN
  Training cohort 0.834(0.830–0.837) 0.798(0.794–0.801) 0.719(0.711–0.727) 0.839(0.832–0.845)
  Internal validation cohort 0.709(0.699–0.720) 0.772(0.763–0.780) 0.654(0.638–0.670) 0.839(0.824–0.853)
  External validation cohort 0.859(0.856–0.862) 0.846(0.843–0.848) 0.744(0.734–0.753) 0.904(0.897–0.911)
  Prospective validation 0.754(0.750–0.758) 0.820(0.817–0.822) 0.653(0.644–0.662) 0.891(0.885–0.898)
SVM
  Training cohort 0.720(0.694–0.746) 0.814(0.807–0.821) 0.657(0.628–0.686) 0.895(0.889–0.902)
  Internal validation cohort 0.609(0.595–0.622) 0.751(0.744–0.758) 0.522(0.503–0.542) 0.870(0.857–0.883)
  External validation cohort 0.728(0.702–0.753) 0.797(0.788–0.805) 0.681(0.651–0.711) 0.863(0.851–0.875)
  Prospective validation 0.690(0.667–0.713) 0.752(0.739–0.766) 0.713(0.690–0.735) 0.769(0.746–0.793)
XGBoost
  Training cohort 0.835(0.826–0.843) 0.788(0.779–0.798) 0.774(0.762–0.786) 0.796(0.783–0.809)
  Internal validation cohort 0.830(0.817–0.842) 0.816(0.808–0.824) 0.799(0.780–0.818) 0.827(0.815–0.839)
  External validation cohort 0.816(0.808–0.824) 0.778(0.770–0.786) 0.775(0.760–0.790) 0.780(0.763–0.796)
  Prospective validation 0.776(0.771–0.782) 0.797(0.790–0.803) 0.693(0.681–0.705) 0.841(0.830–0.853)
LR
  Training cohort 0.790(0.788–0.792) 0.776(0.772–0.780) 0.689(0.678–0.699) 0.821(0.811–0.832)
  Internal validation cohort 0.764(0.755–0.773) 0.788(0.780–0.795) 0.715(0.700–0.730) 0.826(0.812–0.839)
  External validation cohort 0.795(0.794–0.795) 0.845(0.844–0.846) 0.597(0.594–0.599) 0.986(0.983–0.989)
  Prospective validation 0.802(0.801–0.803) 0.844(0.841–0.846) 0.684(0.679–0.689) 0.912(0.907–0.917)
Notes: AUC, the area under curve, RF, random forest, KNN, K-nearest neighbor, SVM, support vector machine, XGBoost, eXtreme Gradient Boosting, LR, logistic 
regression. CI, confidence intervals

Characteristics Training cohort and internal valida-
tion Cohort (n = 117)

External validation cohort
(n = 33)

Prospective validation cohort
(n = 30)

cholangiocyte 
phenotype (-)
(N = 77)

cholangiocyte 
phenotype (+)
(N = 40)

cholangiocyte 
phenotype (-)
(N = 21)

cholangiocyte 
phenotype (+)
(N = 12)

cholangiocyte 
phenotype (-)
(N = 21)

cholangio-
cyte pheno-
type (+)
(N = 9)

rrT1rt
  Mean ± SD 0.399 ± 0.128 0.389 ± 0.120 0.369 ± 0.126 0.334 ± 0.113 0.437 ± 0.144 0.396 ± 0.162
Notes: Continuous variables with normal distribution are presented as mean ± standard deviation (SD) and those with abnormal distribution as median (minimum, 
maximum range). DWI, diffusion-weighted imaging, HBP, hepatobiliary phase, T1rt, T1 relaxation time, rrT1rt, the reduction rate of T1 relaxation time

Table 2  (continued) 
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the models were successfully validated using three vali-
dation cohorts. In addition, our results suggest that the 
construction XGBoost model can be used to stratify RFS 
according to prognosis.

The PLR and NLR are commonly used as inflam-
mation-related indicators. Xu et al. [18] showed that 
NLR and PLR are closely related to the poor progno-
sis of tumors. In our study, PLR was an important pre-
dictor of cholangiocyte phenotype positive expression. 
Wei et al. [19] found that platelet count was highly cor-
related with positive CK19 expression, and Chen et al. 
[20] pointed out that PLR is an independent risk factor 
for extrahepatic metastasis after radical resection of an 
HCC, similar to the findings of this study. In addition, 
Lee et al. [21] found a strong correlation between NLR 
and CK19 expression. However, NLR was not included in 
the establishment of the final model in our study, which 
might be due to the different sample sizes. We consider 
that PLR is an important component of inflammation, 
which is involved in the formation of the tumor tissue 

microenvironment, thus changing the local regulation of 
tissue homeostasis, cell proliferation, and genetic stabil-
ity, making tumors more invasive, and leading to worse 
prognosis, which was consistent with the findings of Park 
Y [22].

Encapsulation occurs due to the interaction between 
the tumor and hepatic parenchyma, which is consid-
ered a physical barrier that restricts tumor cells within 
the tumor boundary, thus inhibiting their proliferation 
(23–24). If the encapsulation appears to be ruptured 
on imaging, it indicates that the tumor has invaded the 
surrounding tissue, has higher invasiveness, results in a 
poorer prognosis, and is prone to recurrence [25]. In our 
study, incomplete encapsulation or non-capsular HCC 
were closely associated with cholangiocyte phenotype-
positive HCC. Chen et al. [26] showed that the tumor 
capsule in HCC with a progenitor phenotype was mostly 
incomplete or absent, which is similar to our results. This 
may be related to the more aggressive growth type and 

Fig. 3  Visualization of the model through the Shapley Additive Explanations (SHAP) algorithm. The SHAP bar graph (A) shows the degree of influence 
of the four most significant features on the final predicted probability. The SHAP scatter plot (B) shows the positive or negative effects of each feature on 
the prediction probability through different colors. The SHAP summary effort plot (C) shows the positive and negative effects of each feature of all cases 
in the model on the predictive probability. The SHAP decision plot (D) shows the transition path of a clinical sample’s prediction from the baseline to the 
final outcome, allowing clinicians to identify diagnostic outliers or critical decision boundaries
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higher histological grade of cholangiocyte phenotype-
positive HCC.

The LR-M features in the 2018 version of Liver Imaging 
Report and Data System (LI-RADS) definition include 
the target sign [27], which includes arterial rim enhance-
ment, target sign on DWI, and target sign on HBP. In our 
study, the target sign was relatively common in cholan-
giocyte phenotype-positive HCC, which was similar to 
the findings of previous studies [26, 28]. Additionally, 
the target sign on HBP was an important predictor. This 
might be related to bile duct phenotypic differentiation 

in HCC with positive expression of CK19 or CK7, which 
may lead to the formation of a fibroproliferative intersti-
tium within the tumor, causing the retention of gadoxetic 
acid in the HBP. Unfortunately, in this study, the arte-
rial rim enhancement and target sign on DWI were not 
included in the model. This may be because of the pres-
ence of internal cysts or tumor necrosis. Larger HCCs 
are prone to intratumoral cystic and necrotic degenera-
tion, which is not unique to cholangiocyte phenotype 
positive HCC. It is also frequently observed in other 
tumors, such as metastatic tumors and intrahepatic 

Fig. 4  Group A-C shows three examples of correctly predicted cholangiocyte phenotype negative. Group D-F shows three examples of correctly pre-
dicted cholangiocyte phenotype positive. A: T1rt-20 min (-), Tumor capsule (-),Target sign on HBP (-), PLR (-). B: T1rt-20 min (-), Tumor capsule (+), Target 
sign on HBP (-), PLR (+). C: T1rt-20 min (-), Tumor capsule (+), Target sign on HBP (+), PLR (-). D: T1rt-20 min (+), Tumor capsule (+), Target sign on HBP (+), 
PLR (+). E: T1rt-20 min (+), Tumor capsule (+), Target sign on HBP (-), PLR (-). F: T1rt-20 min (+), Tumor capsule (-), Target sign on HBP (-), PLR (-)
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cholangiocarcinomas. Nevertheless, these findings 
require further validation.

T1 mapping can be combined with gadoxetic acid-
enhanced MRI to provide more accurate and objective 
quantitative images with functional information. Previ-
ous studies have found that T1 mapping combined with 
gadoxetic acid-enhanced MRI could effectively predict 
Ki-67 expression in HCC [29], and previous reports 
also showed that T1 mapping combined with gadoxetic 
acid-enhanced MRI could effectively predict the biologi-
cal characteristics of HCC [10–12]. In our study, T1rt-
20 min was another important predictor of cholangiocyte 
phenotype-positive HCC, and it contributed most to the 
model. This finding was consistent with the findings of 
the studies by Zhao et al. [30] and Choi et al. [31]. To our 
knowledge, there is currently no research on quantitative 
MRI features for cholangiocyte phenotype positive HCC. 
We found that T1rt-20 min greater than 797ms is indica-
tive of cholangiocyte phenotype positive expression. We 
speculate that cholangiocyte phenotype-positive HCC 
possessed high invasiveness, leading to active tumor cell 
proliferation and a higher density. Thus, normal hepato-
cytes are replaced by tumor cells, and the absorption of 
gadoxetic acid was reduced, resulting in a higher T1rt-
20 min value.

Some studies have suggested that AFP [32], tumor mar-
gin [33], peritumoral enhancement, and satellite nod-
ules [19] are risk factors for CK19 expression. However, 
these features were not included in model construction 
in this study, their significance cannot be overlooked and 
needs to be verified further. In addition, according to our 
results, cholangiocyte phenotype positive HCC has a 
higher recurrence rate, and model-based risk stratifica-
tion can reflect prognostic differences.

Our results indicate that the XGBoost model demon-
strates superior predictive performance and higher sta-
bility, which is consistent with previous studies [34, 35]. 
To facilitate clinical application, we employed the SHAP 
method to elucidate the model’s prediction process. 
SHAP can quantify the importance of each feature in the 
model and visualize it, aiding physicians in effectively uti-
lizing the model to identify high-risk patients with chol-
angiocytic phenotype HCC. Additionally, SHAP helps 
uncover hidden important features that may be over-
looked in traditional diagnostic approaches. In this study, 
we were surprised to find that the absolute mean SHAP 
value of T1rt-20 min exceeded that of the other three key 
features, with an optimal cutoff value of 797 milliseconds. 
This highlights the significant additional value of T1 
mapping imaging in conventional diagnostic methods. 
Therefore, SHAP can serve as a powerful tool to assist 
clinicians in interpreting model predictions, enhancing 
confidence in the clinical application of models, and opti-
mizing physicians’ diagnostic and therapeutic decisions. 
Previous studies have also demonstrated that SHAP 
has broad clinical applicability. Yixin et al. [36] devel-
oped a multicenter radiomics-clinical model to evalu-
ate responses to whole-brain radiotherapy, employing 
SHAP to interpret the model. Their results demonstrated 
robust predictive performance, with SHAP providing 
clinician-friendly visual explanations of the model’s deci-
sion process. Similarly, Yiqi et al. [37] utilized SHAP to 
interpret a multiparametric MRI-based radiomics model 
for predicting complete response to neoadjuvant chemo-
radiotherapy in locally advanced rectal cancer. These 
SHAP-driven interpretability approaches enable physi-
cians to tailor more precise treatment strategies based 
on individual patient characteristics. In predicting heart 
failure risk, SHAP analysis revealed that ejection fraction, 

Fig. 5  A: Kaplan Meier curves comparing RFS between patients with pathologically confirmed cholangiocyte phenotype-positive HCC (cholangiocyte 
phenotype +) and classical HCC groups (cholangiocyte phenotype -). B: Kaplan Meier curves comparing RFS between patients with XGBoost calculated 
high-risk and low-risk groups
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NT-proBNP levels, and renal function markers contrib-
uted most significantly to risk stratification. For patients 
with severely reduced ejection fraction and markedly ele-
vated NT-proBNP levels, treatment strategies aimed at 
improving myocardial contractility and reducing cardiac 
load should be prioritized [38].

Limitations
Our study had some limitations. First, the sample size 
of this study was small. Future studies with a larger 
sample size are required to validate the effectiveness of 
our prediction model. Second, this study only included 
patients with HCC who underwent surgical resection 
and excluded patients who were inoperable for clinical 
evaluation, which may have led to selection bias. Third, 
we have assessed CK19 expression while CK7, MUC-1, 
CA19-9, etc. expression are not assessed, which may have 
led to selection bias. Fourthly, the accuracy of assessment 
of lesion MRI features was dependent on the experience 
of radiologists. Therefore, radiomics requires careful con-
sideration in future and further analyses on interpretable 
machine-learning methods involved in medicine should 
be conducted.

Conclusion
In summary, we have developed and validated an optimal 
machine learning model based on T1 mapping gadoxetic 
acid-enhanced MRI for identifying cholangiocyte phe-
notype HCC. T1 mapping offers substantial incremental 
value. Personalized predictions were achieved through 
SHAP analysis, offering valuable insights to support clini-
cal decision-making and potential applications in patient 
management.
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