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Abstract 

Background  The relationship between cytokines and lung metastasis (LM) in breast cancer (BC) remains unclear 
and current clinical methods for identifying breast cancer lung metastasis (BCLM) lack precision, thus underscoring 
the need for an accurate risk prediction model. This study aimed to apply machine learning algorithms for identifying 
the key risk factors for BCLM before developing a reliable prediction model centered on cytokines.

Methods  This population-based retrospective study included 326 BC patients admitted to the Second Affiliated 
Hospital of Xuzhou Medical University between September 2018 and September 2023. After randomly assigning 
the patients to a training cohort (70%; n = 228) or a validation cohort (30%; n = 98) the risk factors for BCLM were iden-
tified using Least Absolute Shrinkage and Selection Operator (LASSO), Extreme Gradient Boosting (XGBoost) and Ran-
dom Forest (RF) models. Significant risk factors were visualized with a Venn diagram and incorporated into a nomo-
gram model, the performance of which was then evaluated according to three criteria, namely discrimination, 
calibration and clinical utility using calibration plots, receiver operating characteristic (ROC) curves and decision curve 
analysis (DCA).

Results  Among the cohort, 70 patients developed LM. A nomogram was then developed to predict the 5-year 
and 10-year BCLM risk by incorporating five key variables, namely endocrine therapy, hsCRP, IL6, IFN-ɑ and TNF-ɑ. 
For the 5-year prediction model, the training and validation cohorts had AUC values of 0.786 (95% CI: 0.691–0.881) 
and 0.627 (95% CI: 0.441–0.813), respectively, while for the 10-year prediction model, the corresponding AUC val-
ues were 0.687 (95% CI: 0.528–0.847) and 0.797 (95% CI: 0.605–0.988), respectively. ROC analysis further confirmed 
the model’s strong discriminative ability, while calibration plots indicated that the predicted and observed outcomes 
were in good agreement in both cohorts. Finally, DCA demonstrated the model’s effectiveness in clinical practice.

Conclusion  Using machine learning algorithms, this study developed aa nomogram that could effectively identify 
BC patients who were at a higher risk of developing LM, thus providing a valuable tool for decision-making in clinical 
settings.
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Introduction
Breast cancer (BC), the most frequently diagnosed malig-
nant tumor in women worldwide, remains the major 
cause of cancer-related mortality among the female 
population [1]. It often begins as a localized disease but 
can subsequently spread to lymph nodes and distant 
organs, thereby posing significant challenges to effective 
treatment [2]. Approximately 10–15% of breast cancer 
patients develop invasive diseases, with distant metasta-
ses occurring within three years of the initial diagnosis. 
However, metastases may also emerge at least a decade 
after initial detection of the cancer. Furthermore, the het-
erogeneity of breast cancer metastasis complicates not 
only the determination of effective treatment strategies 
but also the assessment of metastasis risk factors [3]. Dis-
tant metastases of BC commonly affect organs, such as 
the brain, lungs, liver and bone, where they exhibit organ-
specific patterns, and hence, each site is often associated 
with distinct symptoms, prognosis and treatment [4]. In 
nearly 25% of patients with metastatic BC, the lungs are 
the first and sometimes the only site of metastasis [5]. 
Additionally, the lungs represent the second most fre-
quent site of BC metastasis, with a 5-year overall survival 
rate of only 16.8% [6]. Due to the typically asymptomatic 
nature of lung metastasis in BC, many patients remain 
undiagnosed until the disease becomes incurable, thus 
underscoring the need for timely intervention and proper 
care [7]. Early detection of lung metastases and accurate 
prognostic evaluation are crucial for improving outcomes 
of BC patients in clinical practice, especially to enable 
better clinical management and potentially achieve long-
term survival. However, in Asian populations, the clin-
icopathological characteristics and risk factors associated 
with breast cancer lung metastases (BCLM) remain 
underexplored. This highlights the urgent need for pre-
dictive models to identify patients at the highest risk of 
developing lung metastases, thereby enabling physicians 
to tailor treatments according to patient needs.

In recent years, machine learning (ML) has emerged as 
a powerful tool for big data analysis, particularly for pre-
dicting the early stages of cancer [8–10]. ML enables the 
development of algorithms that can learn from data, pre-
dict outcomes and improve over time, thereby facilitating 
precise decision-making [11–13]. As such, its potential 
in exploring risk factors for disease progression and pre-
dict patient prognosis is significant [14]. Some predictive 
models, such as Extreme Gradient Boosting (XGBoost) 
[15], Least Absolute Shrinkage and Selection Operator 
(LASSO) [16] and Random Forest (RF) [17], have dem-
onstrated superior generalization capabilities compared 
with traditional statistical models, especially since they 
excel at simulating and predicting complex relationships 
between variables and outcomes. However, despite these 

advances, few studies have explored the application of 
ML models for predicting the risk of lung metastases in 
BCLM.

Interleukins (ILs), a family of low-molecular-weight 
cytokines secreted by immune active cells, exhibit both 
pro-inflammatory and anti-inflammatory properties 
[18–21]. ILs are involved in cancer-related inflamma-
tion, influencing tumor progression through anti-tumor 
immune responses or by promoting a tumor-supporting 
microenvironment [22]. Previous research has identified 
specific ILs as risk factors in breast cancer subtypes. For 
instance, IL- 5, IL- 7 and IL- 16 were found to be asso-
ciated with HER2-positive BC, while IL- 10 levels corre-
lated with HER2-negative cases [23]. However, the role 
of various cytokines in BCLM patients remains unclear, 
especially with regards to those associated with enhanced 
risks of developing lung metastases in BC. Therefore, 
incorporating cytokines into predictive models of lung 
metastasis in BC is essential. In this context, the current 
study aimed to identify cytokine-based risk factors for 
lung metastases in breast cancer and establish a predic-
tive risk model that could guide personalized treatment 
strategies and improve outcomes for BC patients.

Methods and materials
Study design and selection of patients
Approval for this study was obtained from the Ethics 
Committee of the Second Affiliated Hospital of Xuzhou 
Medical University (Ethics Approval Number: 120601). 
Using the inpatients’ electronic medical record system 
of the Second Affiliated Hospital of Xuzhou Medical 
University, the current research retrospectively analyzed 
BC patients who were admitted to the hospital between 
September 2018 and September 2023. The following 
inclusion criteria was then applied: 1) a histologically-
confirmed diagnosis of BC as the only primary malignant 
tumor; 2) Sufficient information about survival time and 
follow-up. In addition, BC patients were excluded if: 1) 
they were male; 2) the time interval from diagnosis to 
follow-up was less than one year; 3) rheumatic diseases 
and infections were present; 4) results for cytokine test-
ing were incomplete; 5) they were unmarried; 6) multi-
ple primary tumors were present. Overall, 326 patients 
met the above criteria, with 70 of them also present-
ing lung metastases which were diagnosed using radio-
logical scans, biopsy or surgical resection specimens of 
metastatic lesions. The selected patients were then ran-
domly assigned to two groups: a training group with 228 
patients (accounting for 70%) and a validation one con-
sisting of 98 patients (accounting for 30%). The above 
process of patient selection is visually represented in 
Fig. 1.
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Data collection and processing
The study collected comprehensive baseline demo-
graphic and clinicopathological data for each partici-
pant, including age at diagnosis, TNM staging (I–IV), 
and the number of extrathoracic metastatic sites prior to 
pulmonary involvement. Treatment history before lung 
metastasis was documented, encompassing radiotherapy, 
chemotherapy, endocrine therapy, targeted agents, and 
immunotherapy. Surgical approach (breast-conserving 
or radical resection), axillary lymph node involvement, 
maximal tumor dimension, and immunohistochemical 
profiles (ER, PR, HER2, Ki67) were recorded. Additional 
variables included histologic grade (I–III), molecular 
subtype classification (Luminal A/B, HER2-enriched, 
triple-negative), tumor laterality (unilateral/bilateral), 
and histopathological categorization (ductal, lobular, or 
other). Anthropometric (BMI), menopausal status, serum 
tumor markers, and novel biomarkers (adenosine kinase 
1, high-sensitivity C-reactive protein) were analyzed 
alongside hematologic parameters, albumin-fibrinogen 

ratios, and a multiplex cytokine panel (IFN-α/γ, IL- 
1β/2/4/5/6/8/10/12p70/17 A, TNF-α).

Endpoint of study
This study’s primary endpoint was the occurrence of the 
first lung metastasis in BC patients. The follow-up dead-
line was defined as the time from the initial diagnosis of 
BC to the development of lung metastasis or the date of 
the last follow-up.

Machine learning
Machine learning algorithms—including XGBoost, ran-
dom forest (RF), and least absolute shrinkage and selec-
tion operator (LASSO)—were employed to systematically 
assess risk factors associated with lung metastasis in 
breast cancer (BC). LASSO, a regression-based method, 
facilitates feature selection and regularization by iden-
tifying the most predictive variables while minimizing 
overfitting [24, 25]. RF is an ensemble learning method 
that combines multiple predictions or classifications to 

Fig. 1  The fowchart described the process of conducting the study and statistical analysis. Note: LASSO = Least Absolute Shrinkage and Selection 
Operator,RF = Random Forest, BCLM = Breast cancer lung metastases,XGBoost = Extreme Gradient Boosting;DCA = Decision Curve Analysis,ROC 
= Receiver Operating Characteristic Curve
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improve overall accuracy of prediction. It is highly versa-
tile, capable of handling both categorical and continuous 
data, while also demonstrating strong noise resistance 
which effectively prevents overfitting, a key consideration 
when analyzing complex datasets [26]. Finally, XGBoost 
is an ML algorithm based on the gradient boosting 
framework and the CART decision tree algorithm. It 
offers high efficiency, flexibility and portability, resulting 
in superior prediction accuracy [27].

Nomogram model construction
Patients were randomly allocated to training and vali-
dation cohorts. The training cohort data were used to 
develop predictive models (RF, XGBoost, and LASSO), 
while internal validation was performed using the vali-
dation cohort [28, 29]. Key risk factors for breast can-
cer lung metastasis (BCLM) were identified through 
Venn diagram analysis and incorporated into nomo-
gram models predicting 5- and 10-year BCLM risk. 
Lung metastasis-free survival was assessed via Kaplan–
Meier analysis, with between-group differences evalu-
ated using log-rank tests. Model performance was 
evaluated based on discrimination (AUC, equivalent 
to the C-index), calibration (calibration plots and Hos-
mer–Lemeshow test), and clinical utility (decision curve 
analysis, DCA).

Statistical analysis
Metric data with a normal distribution were presented 
as mean ± SD, while non-normally distributed ones were 
expressed as median (P25, P75). Additionally, categorical 
data were described as counts (percentages). Two-group 
comparisons were then performed using the Mann–
Whitney U test and the independent sample t-test for 
non-parametric and parametric values, respectively. In 
the case of categorical variables, results were compared 
using the chi-square test. All statistical tests, performed 
using SPSS version 23.0 (SPSS Italy, Florence, Italy) and 
statistical software package R (version 4.0.0, R statisti-
cal calculation project), were two-tailed, with differences 
considered to be significant at P < 0.05.

Results
Patients’ baseline characteristics
This study included 326 breast cancer patients who vis-
ited the Second Affiliated Hospital of Xuzhou Medi-
cal University between September 2018 and September 
2023, and among these, 70 patients also presented lung 
metastases. The cohort’s median age was 52 years, 
and the majority had undergone modified radical sur-
gery (85.28%). Postoperative histopathological analysis 
revealed that invasive ductal carcinoma was the predom-
inant histological type (74.85%), with Luminal B being 

the most common molecular subtype (73.62%). Regard-
ing tumor staging, 44.79% of patients were classified as 
T2 stage, and 34.97% had no lymph node metastases. 
Additionally, most patients (70.55%) did not experience 
metastases to other organs before developing lung metas-
tases. In terms of treatment, chemotherapy (92.64%) was 
the most commonly administered one, followed by radio-
therapy (64.42%), endocrine therapy (43.56%), targeted 
therapy (34.97%) and immunotherapy (3.07%). The non-
BCLM and BCLM groups were also significantly differ-
ent (P < 0.05) in terms of several parameters, including 
CA125, CA153, hsCRP, absolute monocyte count, TNF-
α, IL- 8, IL- 6, IL- 2, IL- 1 β and IL- 12p70. The clinical 
characteristics of the 326 BC patients and baseline com-
parisons between the BCLM and non-BCLM groups are 
summarized in Table  1. Furthermore, demographic and 
clinicopathological characteristics did not differ signifi-
cantly between patients of the training and validation 
groups (Table 2).

Identification of BCLM risk factors
To identify the risk factors for BCLM, the LASSO algo-
rithm was employed, with Supplementary Figure S1-A 
showing the binomial deviation curve plotted against 
the logarithm of the tuning hyperparameter (λ). In this 
case, the solid vertical line indicates the binomial devi-
ation ± standard error (SE), while the optimal λ value 
was determined using the minimum standard and 1-SE 
standard through tenfold cross validation. Further-
more, a coefficient profile was generated from the log 
(λ) sequence, with 49 clinical parameters integrated 
into the LASSO model to enable effective penalization 
of non-essential features. Following model training 
and the tenfold cross validation, 12 non-zero coeffi-
cients were identified as being significantly associated 
with lung metastasis (Supplementary S1B). Accord-
ing to the Lasso model’s feature importance ranking 
(Fig.  2A), the relative importance of predictors from 
highest to lowest was as follows: other organ metasta-
sis, endocrine therapy, PR status, absolute lymphocyte 
count, targeted therapy, IL- 2, INF-α, TNF-α, CEA, 
CA125, hsCRP, and IL- 6.

Identification of risk factors for BCLM
The RF machine learning algorithm was used to fur-
ther refine the selection of risk factors. This algorithm 
works by randomly extracting subsets of features from 
the training data, with each subset subsequently uti-
lized to construct a decision tree. For each node within 
these decision trees, the optimal feature was chosen 
from a random subset of features for node partition-
ing. The decision tree was then recursively built based 
on the selected features until a predefined stopping 



Page 5 of 17Li et al. BMC Cancer          (2025) 25:692 	

Table 1  Baseline characteristics of patients with lung metastases from breast cancer (BCLM)

Characteristic Overall, N = 3261 No BCLM, N = 2561 BCLM, N = 701 p-value2

Age, years 52 (45, 58) 52 (45, 58) 50 (42, 58) 0.197

BMI,kg/m2 22.97 (21.48, 24.61) 22.97 (21.48, 24.46) 22.74 (19.81, 25.01) 0.169

β2MG, ug/ml 1.80 (1.53, 2.24) 1.79 (1.52, 2.23) 1.93 (1.59, 2.44) 0.171

CEA2, ng/ml 2 (2, 4) 2 (2, 3) 3 (2, 7) 0.148

TSGF, U/ml 53 (46, 62) 53 (46, 61) 53 (45, 62) 0.981

SCC,ug/ml 0.58 (0.47, 0.78) 0.59 (0.48, 0.78) 0.56 (0.39, 0.78) 0.182

CA125, U/ml 14 (10, 22) 14 (10, 20) 22 (12, 41)  < 0.001

CA153, U/ml 10 (8, 20) 10 (7, 19) 18 (10, 44)  < 0.001

CA50, IU/ml 6 (4, 11) 6 (4, 10) 7 (4, 12) 0.078

SF,ng/ml 110 (58, 219) 104 (59, 191) 175 (58, 330) 0.053

hsCRP,mg/L 2 (1, 3) 2 (1, 3) 3 (1, 9) 0.006

Neutrophil count,10⁹/L 3.05 (2.34, 4.41) 3.08 (2.30, 4.39) 3.05 (2.44, 4.99) 0.777

Lymphocyte count,10⁹/L 1.36 (1.12, 1.72) 1.36 (1.13, 1.76) 1.41 (1.09, 1.63) 0.725

Hb,g/L 125 (114, 132) 126 (114, 132) 123 (113, 131) 0.357

PLT,10⁹/L 236 (179, 290) 239 (182, 292) 231 (176, 283) 0.454

Monocyte count,10⁹/L 0.38 (0.31, 0.52) 0.36 (0.31, 0.49) 0.46 (0.35, 0.55) 0.004

Albumin,g/L 43.6 (40.7, 46.5) 43.5 (40.7, 46.5) 44.9 (41.6, 46.6) 0.215

Fibrinogen,g/L 3.86 (3.27, 4.21) 3.81 (3.27, 4.20) 3.96 (3.57, 4.26) 0.155

IFNα, pg/ml 2.14 (1.46, 3.67) 2.30 (1.46, 3.94) 1.99 (1.46, 3.00) 0.337

IFNγ,pg/ml 2.8 (1.9, 4.8) 3.0 (2.0, 5.0) 2.4 (1.7, 3.9) 0.119

IL12p70, pg/ml 1.94 (1.14, 3.04) 1.98 (1.21, 3.27) 1.71 (0.95, 2.34) 0.019

IL17 A, pg/ml 4 (2, 10) 4 (2, 11) 4 (2, 8) 0.844

IL1β, pg/ml 1.75 (1.07, 2.86) 1.92 (1.15, 3.21) 1.62 (0.74, 2.72) 0.042

IL2, pg/ml 1.75 (0.98, 3.17) 1.84 (1.03, 3.37) 1.38 (0.87, 2.26) 0.005

IL4, pg/ml 2.06 (1.36, 3.35) 2.08 (1.37, 3.40) 1.94 (1.25, 2.99) 0.281

IL5, pg/ml 1.11 (0.68, 1.54) 1.15 (0.74, 1.59) 1.05 (0.63, 1.31) 0.178

IL6, pg/ml 5 (3, 9) 5 (3, 8) 8 (4, 21) 0.001

IL8, pg/ml 9 (6, 14) 9 (6, 13) 12 (6, 22) 0.005

IL10, pg/ml 3.35 (2.07, 4.48) 3.53 (2.03, 4.63) 3.10 (2.15, 4.15) 0.452

TNFα, pg/ml 1.95 (1.23, 3.45) 2.04 (1.28, 3.56) 1.59 (1.17, 2.48) 0.010

Organ transfer 0.682

  No, n (%) 230 (70.55%) 182 (71.09%) 48 (68.57%)

  Yes, n (%) 96 (29.45%) 74 (28.91%) 22 (31.43%)

Endocrine therapy 0.004

  No, n (%) 70 (21.47%) 22 (31.43%) 48 (18.75%)

  Yes, n (%) 256 (78.53%) 48 (68.57%) 208 (81.25%)

Targeted therapy 0.067

  No, n (%) 212 (65.03%) 160 (62.50%) 52 (74.29%)

  Yes, n (%) 114 (34.97%) 96 (37.50%) 18 (25.71%)

Immunotherapy 0.231

  No, n (%) 316 (96.93%) 250 (97.66%) 66 (94.29%)

  Yes, n (%) 10 (3.07%) 6 (2.34%) 4 (5.71%)

Radiotherapy 0.046

  No, n (%) 116 (35.58%) 84 (32.81%) 32 (45.71%)

  Yes, n (%) 210 (64.42%) 172 (67.19%) 38 (54.29%)

Chemotherapy 0.142

  No, n (%) 24 (7.36%) 16 (6.25%) 8 (11.43%)

  Yes, n (%) 302 (92.64%) 240 (93.75%) 62 (88.57%)

AJCC-T 0.010
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Table 1  (continued)

Characteristic Overall, N = 3261 No BCLM, N = 2561 BCLM, N = 701 p-value2

  T1, n (%) 90 (27.61%) 78 (30.47%) 12 (17.14%)

  T2, n (%) 146 (44.79%) 116 (45.31%) 30 (42.86%)

  T3, n (%) 24 (7.36%) 20 (7.81%) 4 (5.71%)

  T4, n (%) 24 (7.36%) 14 (5.47%) 10 (14.29%)

  Unknown, n (%) 42 (12.88%) 28 (10.94%) 14 (20.00%)

AJCC-N 0.099

  N0, n (%) 114 (34.97%) 96 (37.50%) 18 (25.71%)

  N1, n (%) 82 (25.15%) 68 (26.56%) 14 (20.00%)

  N2, n (%) 62 (19.02%) 44 (17.19%) 18 (25.71%)

  N3, n (%) 42 (12.88%) 30 (11.72%) 12 (17.14%)

  Unknown, n (%) 26 (7.98%) 18 (7.03%) 8 (11.43%)

AJCC-M 0.682

  M0, n (%) 318 (97.55%) 250 (97.66%) 68 (97.14%)

  M1, n (%) 8 (2.45%) 6 (2.34%) 2 (2.86%)

Surgery 0.038

  Modified radical mastectomy, n (%) 278 (85.28%) 212 (82.81%) 66 (94.29%)

  Breast conserving surgery, n (%) 32 (9.82%) 30 (11.72%) 2 (2.86%)

  No surgery, n (%) 16 (4.91%) 14 (5.47%) 2 (2.86%)

Pathological grading 0.191

  I, n (%) 14 (4.29%) 12 (4.69%) 2 (2.86%)

  II, n (%) 106 (32.52%) 90 (35.16%) 16 (22.86%)

  III, n (%) 60 (18.40%) 46 (17.97%) 14 (20.00%)

  IV, n (%) 4 (1.23%) 4 (1.56%) 0 (0.00%)

  Unknown, n (%) 142 (43.56%) 104 (40.63%) 38 (54.29%)

ER +  0.257

  Yes, n (%) 192 (58.90%) 156 (60.94%) 36 (51.43%)

  No, n (%) 104 (31.90%) 76 (29.69%) 28 (40.00%)

  Unknow, n (%) 30 (9.20%) 24 (9.38%) 6 (8.57%)

PR +   < 0.001

  Yes, n (%) 176 (53.99%) 152 (59.38%) 24 (34.29%)

  No, n (%) 120 (36.81%) 80 (31.25%) 40 (57.14%)

  Unknow, n (%) 30 (9.20%) 24 (9.38%) 6 (8.57%)

HER2 +  0.970

  Yes, n (%) 212 (65.03%) 166 (64.84%) 46 (65.71%)

  No, n (%) 78 (23.93%) 62 (24.22%) 16 (22.86%)

  Unknow, n (%) 36 (11.04%) 28 (10.94%) 8 (11.43%)

ki67 > 14% 0.001

  Yes, n (%) 202 (61.96%) 160 (62.50%) 42 (60.00%)

  No, n (%) 54 (16.56%) 50 (19.53%) 4 (5.71%)

  Unknow, n (%) 70 (21.47%) 46 (17.97%) 24 (34.29%)

Subtype 0.109

  Luminal A, n (%) 16 (4.91%) 14 (5.47%) 2 (2.86%)

  Luminal B, n (%) 240 (73.62%) 194 (75.78%) 46 (65.71%)

  Triple-negative, n (%) 42 (12.88%) 30 (11.72%) 12 (17.14%)

  HER2, n (%) 28 (8.59%) 18 (7.03%) 10 (14.29%)

Laterality 0.338

  Left, n (%) 184 (56.44%) 146 (57.03%) 38 (54.29%)

  Right, n (%) 138 (42.33%) 108 (42.19%) 30 (42.86%)

  Bilateral, n (%) 4 (1.23%) 2 (0.78%) 2 (2.86%)



Page 7 of 17Li et al. BMC Cancer          (2025) 25:692 	

condition was met. For classification problems, the final 
class was determined through a majority voting mecha-
nism, while in the case of regression problems, the aver-
age of the predicted values from all trees served as the 
final prediction. The algorithm eventually combined the 
outputs from all constructed decision trees to calcu-
late the average error rates separately for node-positive 
and node-negative groups. The importance of clinical 
features was subsequently assessed before visualizing 
their rankings (Fig.  2B). Overall, 24 clinically relevant 
features were identified as risk factors for BCLM, and 
they included IL- 6, PR, BMI, SCC, FIB, ER, endocrine 
therapy, IL- 8, ALB, IL- 17 A, Hb, IFN-γ, hsCRP, TNF-α, 
IL- 12p70, CA125, TSGF, PLT, INF-α, N, SF, B2M, CA50 
and IL10.

The XGBoost model, based on a gradient boost-
ing framework, is another ensemble method that uses 
decision trees to enhance predictive accuracy. Gradi-
ent boosting is a specific implementation of the Boost-
ing technique which iteratively minimize the objective 
function by fitting each new tree with the negative 
gradient of the previous round’s error. In this study, 
the XGBoost model identified 15 non-zero coefficients 
that were significantly correlated with lung metastasis. 
These features were then ranked by relative importance 
(Fig.  2C) as follows: endocrine therapy, IL- 6, hsCRP, 
IL- 17 A, PLT, IL- 8, SCC, SF, INF-α, CEA, ALB, Hb, 
IL2, M, TNF-α.

The RF, LASSO and XGBoost algorithms were used 
to independently identify BCLM-related risk factors, 
with overlapping variables among the three ML mod-
els subsequently selected as significant ones. The inter-
section of these factors was visualized using a Venn 
diagram (Fig.  2D), and the results highlighted five key 
variables for subsequent nomogram analysis: endocrine 

therapy, hsCRP, IL6, IFN-α and TNF-α. To enhance clin-
ical applicability, the Maxstat method was then used to 
assess the optimal risk cut-off points for the five varia-
bles (Supplementary Figure S2). Using these cut-off val-
ues (hsCRP (16.8), IL6 (16.19), IFN-ɑ (2.36) and TNF-ɑ 
(1.35)), the biomarkers were reclassified into high- and 
low-risk groups prior to analysis using Kaplan–Meier 
curves (Supplementary Figure S3) to determine survival 
outcomes. Additionally, Supplementary Figure S4 shows 
the lung metastasis rates across different molecular sub-
types. Compared with Luminal A patients, those with 
the Luminal B subtype demonstrated a lower risk of 
lung metastasis (unadjusted HR: 1.787; P = 0.435), while 
HER2 + (unadjusted HR: 3.571; P = 0.094) exhibited a 
higher risk. In particular, patients with TNBC faced the 
highest risk of lung metastasis (unadjusted HR: 6.487; 
P = 0.018).

Establishment and validation of BCLM diagnostic 
nomogram
A nomogram model was constructed based on five key 
variables: endocrine therapy, hsCRP, IL6, IFN-ɑ, and 
TNF-ɑ. Each variable was assigned a point value ranging 
from 0 to 100 (Fig. 3). The cumulative score, obtained by 
summing these points, allowed estimation of the 5- and 
10-year lung metastasis probability in breast cancer (BC) 
patients, aiding clinical decision-making. Risk prediction 
involved drawing a vertical line from the total score to the 
probability axis (ranging from 0.1 to 0.95), though not all 
probabilities aligned precisely with marked values. The 
model’s performance was evaluated based on discrimina-
tion, calibration, and clinical utility in both training and 
validation cohorts, with results visualized using ROC 
curves, calibration plots, and decision curve analysis. 

Table 1  (continued)

Characteristic Overall, N = 3261 No BCLM, N = 2561 BCLM, N = 701 p-value2

Pathological type 0.121

  Ductal carcinoma, n (%) 244 (74.85%) 188 (73.44%) 56 (80.00%)

  Lobular carcinoma, n (%) 6 (1.84%) 6 (2.34%) 0 (0.00%)

  Other types, n (%) 36 (11.04%) 26 (10.16%) 10 (14.29%)

  Unknown, n (%) 40 (12.27%) 36 (14.06%) 4 (5.71%)

Menopausal 0.801

  No, n (%) 154 (47.24%) 120 (46.88%) 34 (48.57%)

  Yes, n (%) 172 (52.76%) 136 (53.13%) 36 (51.43%)
1 Median (IQR); n (%)
2 Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test

BMI = Body Mass Index,SF = Ferritin, hs-CRP = Hypersensitive C-reactive protein,Hb = Haemoglobin,PLT = Platelet,ER = Estrogen receptors,PR = Progesterone 
receptors,Her2 = Human epidermal growth factor receptor- 2
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Table 2  Comparison of baseline features between training group and validation group

Characteristic Overall, N = 3261 Training group, N = 2281 Validation groups, N = 981 p-value2

Age, years 52 (45, 58) 52 (44, 57) 52 (46, 59) 0.685

BMI,kg/m2 22.97 (21.48, 24.61) 22.89 (21.48, 24.61) 23.44 (21.48, 24.61) 0.973

β2MG, ug/ml 1.80 (1.53, 2.24) 1.82 (1.50, 2.23) 1.78 (1.54, 2.29) 0.717

CEA2, ng/ml 2 (2, 4) 2 (2, 4) 2 (2, 3) 0.631

TSGF, U/ml 53 (46, 62) 52 (46, 61) 53 (47, 62) 0.217

SCC,ug/ml 0.58 (0.47, 0.78) 0.59 (0.48, 0.79) 0.56 (0.45, 0.73) 0.146

CA125, U/ml 14 (10, 22) 15 (10, 23) 14 (10, 22) 0.822

CA153, U/ml 10 (8, 20) 11 (8, 20) 10 (8, 19) 0.934

CA50, IU/ml 6 (4, 11) 6 (4, 11) 7 (5, 10) 0.904

SF,ng/ml 110 (58, 219) 108 (58, 220) 111 (60, 213) 0.935

hsCRP,mg/L 2 (1, 3) 2 (1, 3) 1 (1, 3) 0.132

Neutrophil count,10⁹/L 3.05 (2.34, 4.41) 3.05 (2.42, 4.39) 3.17 (2.30, 4.45) 0.411

Lymphocyte count,10⁹/L 1.36 (1.12, 1.72) 1.40 (1.12, 1.74) 1.35 (1.12, 1.68) 0.622

Hb,g/L 125 (114, 132) 125 (115, 132) 125 (111, 132) 0.405

PLT,10⁹/L 236 (179, 290) 233 (180, 284) 242 (181, 295) 0.363

Monocyte count,10⁹/L 0.38 (0.31, 0.52) 0.38 (0.31, 0.50) 0.40 (0.30, 0.54) 0.904

Albumin,g/L 43.6 (40.7, 46.5) 43.9 (40.9, 46.5) 43.0 (40.4, 46.1) 0.301

Fibrinogen,g/L 3.86 (3.27, 4.21) 3.88 (3.27, 4.21) 3.82 (3.33, 4.21) 0.869

IFNα, pg/ml 2.14 (1.46, 3.67) 2.15 (1.40, 3.64) 2.14 (1.49, 4.14) 0.866

IFNγ,pg/ml 2.8 (1.9, 4.8) 2.8 (1.9, 4.9) 2.7 (1.9, 4.0) 0.507

IL12p70, pg/ml 1.94 (1.14, 3.04) 1.96 (1.13, 3.05) 1.93 (1.22, 3.01) 0.809

IL17 A, pg/ml 4 (2, 10) 4 (2, 11) 3 (2, 8) 0.059

IL1β, pg/ml 1.75 (1.07, 2.86) 1.81 (1.16, 2.86) 1.64 (0.95, 2.81) 0.121

IL2, pg/ml 1.75 (0.98, 3.17) 1.76 (1.01, 2.92) 1.70 (0.96, 3.17) 0.713

IL4, pg/ml 2.06 (1.36, 3.35) 2.04 (1.39, 3.33) 2.09 (1.28, 3.35) 0.717

IL5, pg/ml 1.11 (0.68, 1.54) 1.10 (0.67, 1.55) 1.16 (0.75, 1.40) 0.437

IL6, pg/ml 5 (3, 9) 5 (3, 9) 5 (3, 9) 0.506

IL8, pg/ml 9 (6, 14) 9 (6, 14) 8 (4, 16) 0.118

IL10, pg/ml 3.35 (2.07, 4.48) 3.46 (2.23, 4.68) 3.05 (1.83, 4.28) 0.130

TNFα, pg/ml 1.95 (1.23, 3.45) 1.95 (1.26, 3.52) 1.92 (1.17, 3.22) 0.739

Organ transfer 0.015

  No, n (%) 230 (70.55%) 170 (74.56%) 60 (61.22%)

  Yes, n (%) 96 (29.45%) 58 (25.44%) 38 (38.78%)

Endocrine therapy 0.867

  No, n (%) 70 (21.47%) 51 (22.37%) 19 (19.39%)

  Yes, n (%) 256 (78.53%) 177 (77.63%) 79 (80.61%)

Targeted therapy 0.014

  No, n (%) 212 (65.03%) 158 (69.30%) 54 (55.10%)

  Yes, n (%) 114 (34.97%) 70 (30.70%) 44 (44.90%)

Immunotherapy 0.292

  No, n (%) 316 (96.93%) 219 (96.05%) 97 (98.98%)

  Yes, n (%) 10 (3.07%) 9 (3.95%) 1 (1.02%)

Radiotherapy 0.826

  No, n (%) 116 (35.58%) 82 (35.96%) 34 (34.69%)

  Yes, n (%) 210 (64.42%) 146 (64.04%) 64 (65.31%)

Chemotherapy 0.716

  No, n (%) 24 (7.36%) 16 (7.02%) 8 (8.16%)

  Yes, n (%) 302 (92.64%) 212 (92.98%) 90 (91.84%)

AJCC-T 0.608
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Table 2  (continued)

Characteristic Overall, N = 3261 Training group, N = 2281 Validation groups, N = 981 p-value2

  T1, n (%) 90 (27.61%) 63 (27.63%) 27 (27.55%)

  T2, n (%) 146 (44.79%) 107 (46.93%) 39 (39.80%)

  T3, n (%) 24 (7.36%) 15 (6.58%) 9 (9.18%)

  T4, n (%) 42 (12.88%) 26 (11.40%) 16 (16.33%)

  Unknown, n (%) 24 (7.36%) 17 (7.46%) 7 (7.14%)

AJCC-N 0.128

  N0, n (%) 114 (34.97%) 82 (35.96%) 32 (32.65%)

  N1, n (%) 82 (25.15%) 53 (23.25%) 29 (29.59%)

  N2, n (%) 62 (19.02%) 45 (19.74%) 17 (17.35%)

  N3, n (%) 42 (12.88%) 34 (14.91%) 8 (8.16%)

  Unknown, n (%) 26 (7.98%) 14 (6.14%) 12 (12.24%)

AJCC-M  > 0.999

  M0, n (%) 318 (97.55%) 222 (97.37%) 96 (97.96%)

  M1, n (%) 8 (2.45%) 6 (2.63%) 2 (2.04%)

Surgery 0.306

  Modified radical mastectomy, n (%) 278 (85.28%) 194 (85.09%) 84 (85.71%)

  Breast conserving surgery, n (%) 32 (9.82%) 25 (10.96%) 7 (7.14%)

  No surgery, n (%) 16 (4.91%) 9 (3.95%) 7 (7.14%)

Pathological grading 0.417

  I, n (%) 14 (4.29%) 9 (3.95%) 5 (5.10%)

  II, n (%) 106 (32.52%) 76 (33.33%) 30 (30.61%)

  III, n (%) 60 (18.40%) 47 (20.61%) 13 (13.27%)

  IV, n (%) 4 (1.23%) 3 (1.32%) 1 (1.02%)

  Unknown, n (%) 142 (43.56%) 93 (40.79%) 49 (50.00%)

ER +  0.022

  Yes, n (%) 176 (53.99%) 134 (58.77%) 42 (42.86%)

  No, n (%) 120 (36.81%) 77 (33.77%) 43 (43.88%)

  Unknow, n (%) 30 (9.20%) 17 (7.46%) 13 (13.27%)

PR +  0.013

  Yes, n (%) 192 (58.90%) 146 (64.04%) 46 (46.94%)

  No, n (%) 104 (31.90%) 65 (28.51%) 39 (39.80%)

  Unknow, n (%) 30 (9.20%) 17 (7.46%) 13 (13.27%)

HER2 +  0.043

  Yes, n (%) 212 (65.03%) 143 (62.72%) 69 (70.41%)

  No, n (%) 78 (23.93%) 63 (27.63%) 15 (15.31%)

  Unknow, n (%) 36 (11.04%) 22 (9.65%) 14 (14.29%)

ki67 > 14% 0.264

  Yes, n (%) 202 (61.96%) 143 (62.72%) 59 (60.20%)

  No, n (%) 54 (16.56%) 41 (17.98%) 13 (13.27%)

  Unknow, n (%) 70 (21.47%) 44 (19.30%) 26 (26.53%)

Subtype 0.158

  Luminal A, n (%) 16 (4.91%) 13 (5.70%) 3 (3.06%)

  Luminal B, n (%) 240 (73.62%) 164 (71.93%) 76 (77.55%)

  Triple-negative, n (%) 42 (12.88%) 27 (11.84%) 15 (15.31%)

  HER2, n (%) 28 (8.59%) 24 (10.53%) 4 (4.08%)

Laterality 0.252

  Left, n (%) 184 (56.44%) 135 (59.21%) 49 (50.00%)

  Right, n (%) 138 (42.33%) 90 (39.47%) 48 (48.98%)

  Bilateral, n (%) 4 (1.23%) 3 (1.32%) 1 (1.02%)
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In the training set, the AUC values for 5- and 10-year 
metastasis prediction were 0.786 (95% CI: 0.691–0.881) 
and 0.787 (95% CI: 0.749–0.824), respectively. The valida-
tion set yielded AUCs of 0.627 (95% CI: 0.441–0.813) for 
5-year and 0.797 (95% CI: 0.605–0.988) for 10-year pre-
diction. These findings indicate robust predictive accu-
racy across both datasets (Fig. 4A, B).

Calibration curve and DCA analysis
Calibration curves were generated for evaluating the 
nomogram’s performance. Following internal validation 
with 1000 bootstrap iterations, the calibration curves 
for both the training and validation sets (Fig.  5A, B) 
closely aligned with the diagonal line, indicating that 
the predicted and actual probabilities of lung metasta-
sis were in strong agreement. The nomogram’s clinical 
utility was assessed using DCA (Fig.  6A, B), in which 
the horizontal line represented the assumption of no 
lung metastasis where the net benefit was zero and the 
diagonal line represented the scenario where all patients 
were assumed to have BCLM. Overall, the decision 
curves demonstrated that the range of high threshold 
probabilities was broad and applicable to both the train-
ing and validation sets. Compared with individual vari-
ables, the nomogram exhibited a higher net benefit for 
both datasets, thus underscoring its superior predictive 
ability. This indicates that the nomogram can effectively 
predict the 5-year and 10-year risk of lung metastasis in 
BC patients.

Discussion
In this study, multiple ML algorithms were applied to 
determine the risk factors for BCLM, with the follow-
ing five significant predictors subsequently identified: 
endocrine therapy, hsCRP, IL6, IFN-ɑ, and TNF-ɑ. 
These variables were then integrated into a nomogram 
model. The findings provided a framework for iden-
tifying BC patients who were at a higher risk of lung 
metastasis, thereby improving prognostic evaluation 
and clinical management while offering new insights 
for developing more effective treatments. Addition-
ally, this study was also the first one to construct a lung 
metastasis prediction model for BC patients based on 
cytokines. The model demonstrated high accuracy in 
predicting survival outcomes for BCLM patients, and 
in practice, the nomogram, which integrated predic-
tions from RF, LASSO and XGBoost algorithms, exhib-
ited robust performance across both the training and 
validation groups.

A Mendelian randomization analysis involving 
420,964 cancer-free patients from the UK Biobank 
cohort showed that elevated serum c-reactive protein 
(CRP) levels were linked to higher risks of breast can-
cer, colorectal cancer, head and neck as well as other 
malignancies over a 7.1-year follow-up period [30]. 
Similarly, a meta-analysis examining 119 inflamma-
tory markers (with CRP as the primary focus) across 
26 cancer types reached comparable conclusions 
[31]. These pan-cancer studies identified individuals 

Table 2  (continued)

Characteristic Overall, N = 3261 Training group, N = 2281 Validation groups, N = 981 p-value2

Pathological type 0.655

  Ductal carcinoma, n (%) 244 (74.85%) 170 (74.56%) 74 (75.51%)

  Lobular carcinoma, n (%) 6 (1.84%) 4 (1.75%) 2 (2.04%)

  Other types, n (%) 36 (11.04%) 28 (12.28%) 8 (8.16%)

  Unknown, n (%) 40 (12.27%) 26 (11.40%) 14 (14.29%)

Menopausal 0.299

  No, n (%) 154 (47.24%) 112 (49.12%) 42 (42.86%)

  Yes, n (%) 172 (52.76%) 116 (50.88%) 56 (57.14%)

Lung Metastasis 0.234

  No BCLM, n (%) 256 (78.53%) 175 (76.75%) 81 (82.65%)

  BCLM, n (%) 70 (21.47%) 53 (23.25%) 17 (17.35%)
1 Median (IQR); n (%)

2 Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test

BMI = Body Mass Index,SF = Ferritin, hs-CRP = Hypersensitive C-reactive protein,Hb = Haemoglobin,PLT = Platelet,ER = Estrogen receptors,PR = Progesterone 
receptors,Her2 = Human epidermal growth factor receptor- 2
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with CRP levels above 3 mg/L as having a high risk 
of inflammation but this threshold may not apply 
specifically to BC [30, 32]. The findings further cor-
roborated the link between elevated hypersensitive 
CRP and an increased risk of BCLM. This suggests 
that inflammation in BC patients may contribute to 
tumor proliferation and metastasis, including lung 

metastasis. The above analyses also determined the 
optimal hsCRP cut-off value for predicting BCLM to 
be 16.8 mg/L, hence providing a potential reference 
point for individualized breast cancer treatment. Inter-
estingly, CRP was consistently identified as a key risk 
factor for BCLM across all three ML models used in 
this study. While prior meta-analyses have highlighted 

Fig. 2  Features selection using Lasso algorithm. A The importance of 12 features was ranked using Lasso algorithm. B Identification of risk factors 
for BCLM using RF. C Ranking of relative importance of features of XGBoost model. D Five common risk factors for BCLM were visualized using 
a Venn diagram
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the limited predictive value of CRP in non-metastatic 
BC, the association between elevated CRP levels and 
poor prognosis is well documented in metastatic cases 
[33, 34]. For instance, in  vitro studies revealed that 
CRP could promote the adhesion of MCF10 A human 
breast epithelial cells through activation of the integ-
rin α 2 signaling pathway and Fcγ receptor I (FcγRI), 
with the process subsequently activating paxillin, 
FAK and ERKs to drive autocrine effects [35]. Fur-
thermore, using an invasion model of MDA-MB- 231 
TNBC cells and mouse tumor models, CRP was shown 
to be involved in tumor growth. Additional animal 
experiments further demonstrated that CRP impaired 
immune surveillance by inhibiting the activation of 
pulmonary macrophages, induced by symbiotic bacte-
ria through an FcγR2B dependent mechanism, thereby 
fostering the formation of pre-metastatic niches in the 
lungs of tumor-bearing mice [36]. Altogether, these 
findings highlight the significant role of CRP in lung 
metastasis, thus supporting this study’s results.

This study underscores the potential of endocrine 
therapy to reduce the risk of BCLM, with this lower 
risk being particularly evident among hormone recep-
tor-positive patients who constituted over half of the 
total study population. Of these patients, 80% received 
endocrine therapy, including options such as tamox-
ifen and steroidal (exemestane) or nonsteroidal (letro-
zole or anastrozole) aromatase inhibitors. Tamoxifen is 
known to improve disease-free and overall survival in 

postmenopausal women with ER-positive tumors [37, 
38]. However, the BIG trial demonstrated that first-
line treatment with aromatase inhibitors lowered the 
absolute risk of 10-year recurrence by 3.6%, increased 
overall survival by 2.1% and outperformed tamoxifen 
monotherapy [39]. Furthermore, post hoc analyses 
of the SOFT and TEXT trials revealed that combin-
ing ovarian suppression with tamoxifen significantly 
improved 8-year disease-free and overall survival rates 
in comparison with tamoxifen alone [40]. Despite the 
success of endocrine therapy in reducing BC recur-
rence and mortality, both intrinsic and acquired drug 
resistance remain a challenge. In this context, recent 
advances in understanding the drivers and mecha-
nisms underlying endocrine therapy resistance in estro-
gen receptor-positive BC has led to the development 
of targeted drugs, such as mTOR inhibitors and cyclin 
dependent kinase 4/6 inhibitors can markedly extend 
progression-free survival [41, 42]. When lung metasta-
sis rates were further analyzed by molecular subtypes, 
it was found that the risk of lung metastasis was sig-
nificantly lower in hormone receptor-positive patients 
compared with HER2 + ones, with TNBC patients 
exhibiting the highest risk. These results underscore the 
importance of endocrine therapy in mitigating the risk 
of BCLM.

The TME comprises both cellular elements, including 
adipocytes, immune cells [43, 44], endothelial cells and 
cancer-associated fibroblasts, as well as non-cellular 

Fig. 3  Nomogram for the prediction of LM in breast cancer
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components [45–48], such as cytokines and the ECM. 
It promotes tumor progression and invasion through 
the secretion of growth factors and pro-inflammatory 
mediators as well as through intercellular interactions 
and metabolic crosstalk with tumor cells [49, 50]. In 
this study, cytokines were innovatively incorporated 
into a lung metastasis model, and three key inflamma-
tory factors (IL6, IFN-ɑ and TNF-ɑ) associated with 
lung metastasis were then identified using RF, LASSO 
and XGBoost ML algorithms. These cytokines have 
been extensively studied in the context of BC metastasis 

mechanisms. For instance, early research has demon-
strated that IL- 6–174 promoter polymorphism was 
linked to clinical outcomes in a group of lymph node-
positive BC patients undergoing high-dose adjuvant 
therapy [51]. Additionally, Adam et  al. reported that 
fibroblasts isolated from common sites of breast can-
cer metastasis enhanced the growth and invasiveness 
of cancer cells in an IL- 6-dependent manner [52]. 
Similarly, Laura et  al. found that p53 inactivation trig-
gered a methylation-dependent autocrine IL- 6 loop 
that led to epigenetic reprogramming and the devel-
opment of basal/stem cell-like gene expression pro-
files in BC cells [53]. HER2 overexpression has also 
been shown to induce IL- 6 secretion, activate STAT3, 
alter gene expression and reinforce the autocrine IL- 6/
STAT3 loop [54]. In one study, Luca et al. reported that 
the combination of VEGF and IL- 6 synergistically and 
durably activated intracellular signaling pathways, such 
as MAPK, AKT and p38MAPK, in BC cells [55], while 
Rasmus et al. demonstrated that, in ER + breast cancer, 
the IL6/STAT3 signaling pathway could drive metas-
tasis independently of the estrogen receptor. Although 
STAT3 and ER share enhancers, the former can hijack a 
subset of ER enhancers to induce unique transcriptional 
programs. This decoupling of ER and IL6/STAT3 onco-
genic pathways underscores the therapeutic potential 
of targeting IL6/STAT3 in ER + breast cancer [56]. In 
contrast to IL- 6, IFN-α and TNF-α inhibit breast can-
cer growth and invasion through distinct mechanisms. 
Specifically, IFN-α is involved in tumor immune sur-
veillance by activating CD8 α + dendritic cells (DCs) 
and enhancing CD8 + T cell recognition of tumor anti-
gens [57]. Thus, a deficiency in IFN-α can disrupt this 
process, leading to the expansion of regulatory T cells 
(Tregs) which suppresses plasma cell-like DCs and facil-
itate BC metastasis [58]. On the other hand, TNF-α can 
restrict the migration of triple negative, mesenchymal-
like BC cells with high TNFR1 expression, while inhib-
iting the migration of epithelioid cells with low TNFR1 
expression [59].

Conclusions
This study applied three ML methods to systemati-
cally analyze clinical information and surgical pathology 
results, integrated treatment exposure and inflammatory 
markers, and established a predictive model for BCLM. 
This model exhibits strong discriminative ability in both 
training and validation queues. In fact, through this nom-
ogram, doctors can estimate the likelihood of lung metas-
tasis in BC patients based on the cumulative score of 
each risk factor. Therefore, this tool can achieve personal-
ized risk assessment by regularly reviewing inflammation 

Fig. 4  Validation of the ability of nomogram to predict the risk 
of lung metastasis in breast cancer patients within 5 years 
and 10 years. (A) ROC curve in the training cohort; (B) ROC curve 
in the validation cohort
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indicators for high-risk patients, and immediately initiat-
ing imaging screening for patients with improved scores. 
In addition, the findings highlighted the contrasting roles 

of cytokines in BC, with IL- 6 promoting BCLM, while 
IFN-α and TNF-α inhibited tumor metastasis. These 
insights deepen current understanding of the interplay 

Fig. 5  Calibration curves in the training set (A) and validation set (B). The x-axis represents the predicted probability of the nomogram plot, 
and the y-axis represents the actual probability of lung metastasis in breast cancer patients
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Fig. 6  Decision curve analysis for the training set (A) and validation set (B). The horizontal line indicates that all samples are negative and untreated, 
with zero net benefit. A slash indicates that all samples are positive. Net income has a negative slope
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between cytokines and BCLM, thus underscoring the 
importance of detecting and managing inflammation 
associated with BC. Future works should validate the 
current findings through large, prospective, multi-center 
trials.
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