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Abstract
Background Immunoneoadjuvant therapy has gained significant attention due to its remarkable advancements 
in cancer treatment. This study aimed to investigate the molecular mechanisms underlying immunoneoadjuvant 
therapy through a comprehensive multiomics analysis of samples from a registered clinical trial cohort.

Methods Preoperative samples were collected from 16 patients, and postoperative samples were obtained from 12 
among them. RNA sequencing (RNA-seq) and Olink proteomics were employed to identify key genes before and after 
neoadjuvant treatment. The weighted coexpression network was constructed using Weighted gene co-expression 
network analysis (WGCNA). Furthermore, the proportion of infiltrated immune cells was calculated using xCell based 
on normalized expression data derived from RNA-seq.

Results Patients were stratified into T1 (good efficacy) and T2 (poor efficacy) groups based on Tumor Regression 
Grade (TRG) to neoadjuvant immunotherapy. Compared to the T2 group (TRG2 and TRG3), the T1 group (TRG0 and 
TRG1) showed significant differences in pathways related to inflammatory response and myeloid leukocyte activation. 
Furthermore, the T1 group exhibited elevated levels of CD8+ T cells and B cells. The top two factors with the highest 
area under the Receiver Operating Characteristic (ROC) curve were CD8a molecule (CD8A) (1.000) and C-C motif 
chemokine ligand 20 (CCL20) (0.967). Additionally, the expression of placenta growth factor (PGF) and TNF receptor 
superfamily member 21 (TNFRSF21) proteins significantly increased in the T1 group compared to the T2 group. 
High expression of CD8A and PGF were associated with favorable and poor prognosis in gastric cancer patients, 
respectively. Immunoinfiltration analysis revealed a positive correlation between CD8A and dendritic cell (DC) levels, 
while a negative correlation was observed with myeloid-derived suppressor cell (MDSC) levels.
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Introduction
Gastric cancer remains a significant global health con-
cern, ranking fifth in incidence and fourth in mortality 
worldwide [1]. Despite advancements in tumor therapy, 
the subtle and atypical clinical symptoms of early gas-
tric cancer contribute to over 60% of patients developing 
local or distant metastasis at the time of diagnosis [2]. 
Currently, radical surgical resection can effectively cure 
the disease in patients with early-stage gastric cancer. 
However, for those with locally advanced gastric cancer, 
even with interventions such as radiotherapy and chemo-
therapy, the 5-year survival rate sharply decreases [3–5]. 
Therefore, the need for new treatments becomes particu-
larly imperative.

The combination of immunotherapy and chemotherapy 
has established itself as the standard first-line treatment 
for advanced gastric cancer. In the CheckMate-649 trial 
evaluating Nivolumab, patients treated with combina-
tion chemotherapy exhibited significantly longer median 
overall survival (OS) and median progression-free sur-
vival (PFS) compared to those treated with chemotherapy 
alone [6]. Given the notable efficacy of immunotherapy in 
advanced gastric cancer, numerous clinical studies have 
explored whether incorporating immunotherapy into 
perioperative treatment can enhance the survival time 
of patients with locally advanced gastric cancer. A Phase 
III study, Keynote585, presented at the ESMO meeting 
in 2023, indicated that increased perioperative immuno-
therapy improved event-free survival (EFS) and patholog-
ical complete response (pCR) rates in patients but did not 
demonstrate a survival advantage over placebo. Identify-
ing individuals who truly benefit from immunotherapy is 
a pivotal consideration in its current application during 
the perioperative period. To address this, we conducted a 
Phase II clinical study evaluating the perioperative treat-
ment of locally advanced gastric cancer using sintilimab 
in combination with Fluorouracil, Leucovorin, Oxali-
platin, and Docetaxel (FLOT) (Clinical trial number: 
NCT04341857). Sintilimab (also known by its trade name 
Tyvyt) is a fully human monoclonal antibody that tar-
gets the programmed cell death protein 1 (PD-1) recep-
tor. Preliminary results indicate that sintilimab combined 
with FLOT neoadjuvant therapy achieved an 17.2% pCR 
rate of tumor regression grade (TRG) group [7]. The 
study also observed variable responses among patients, 
with some achieving pCR and others not. Currently, 
much debate is ongoing regarding which indicators serve 
as reliable predictors of immunotherapy efficacy.

Subgroup analysis revealed that patients with higher 
Combined Positive Score (CPS) scores of programmed 
cell death-ligand 1 (PD-L1) exhibited a more favorable 
therapeutic effect, and PD-L1 expression levels were sig-
nificantly higher on CD8+ T cells than on CD4+ T cells. 
However, the expression of PD-L1 is not exactly consis-
tent with the efficacy of immunotherapy [8–10]. Blood 
specimens, offering the advantages of convenience and 
multiple sampling compared to tissue specimens, have 
been explored for potential predictive indicators of 
immunotherapy efficacy. Other studies indicated that 
cytokines in the blood might also serve as predictors of 
immunotherapy effectiveness. In our clinical studies, we 
collect blood samples from patients to identify indicators 
of treatment efficacy. Protein biomarkers are the corner-
stones in disease prediction, diagnosis, and prevention. 
The advent of high-throughput proteomics enables the 
simultaneous quantification of numerous proteins. How-
ever, the vast amount of data acquired poses challenges 
for analysis, and the potential for false positive results 
complicates subsequent validation efforts. Recently, 
Olink technology has gained popularity for providing 
multiple detection panels targeting various disease pro-
cesses. Its requirement for small sample volumes is par-
ticularly advantageous when clinical samples are limited. 
Furthermore, it can capture a broad spectrum of proteins 
across the entire dynamic range (> 10 logs). A previ-
ous study demonstrated that Olink proteomics exhibits 
excellent repeatability and stability in detecting proteins 
in plasma samples [11, 12]. In the current study, Olink 
proteomics was employed to identify inflammation-asso-
ciated proteins that showed differences before and after 
neoadjuvant therapy, aiming to identify potential mark-
ers for treatment response.

This study employed a comprehensive omics analysis to 
discern key molecular characteristics associated with the 
efficacy of sintilimab combined with FLOT neoadjuvant 
therapy for gastric/gastroesophageal junction adeno-
carcinoma. This involved analyzing differential proteins 
before and after neoadjuvant therapy and among differ-
ent therapeutic groups. The study further investigated 
the interplay between relevant molecules and immune 
cell infiltration, laying the groundwork for the clinical 
treatment and efficacy evaluation of gastric/gastroesoph-
ageal junction adenocarcinoma.

Conclusions Through multiomics analysis, we discovered that CD8A is linked to enhanced treatment response and 
tumor regression. In contrast, PGF appears to exert adverse effects on treatment outcomes, suggesting a complex 
interplay of factors influencing the efficacy of immunoneoadjuvant therapy in gastric cancer.

Keywords Gastric adenocarcinoma, Neoadjuvant immunotherapy, Sindillimab, Olink proteomics, CD8A, PGF
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Materials and methods
Patient and sample collection
Plasma samples were collected from 16 enrolled patients 
who visited The Affiliated Cancer Hospital of Zhengzhou 
University (Henan Cancer Hospital) between August 
10, 2019, and July 15, 2020, before and after treatment, 
following a standardized treatment regimen. The study 
received approval from the ethics committee of The Affil-
iated Cancer Hospital of Zhengzhou University and was 
conducted in accordance with local ethical guidelines, 
and informed consent for participation in the study has 
been obtained from all participants.

Each patient underwent four cycles of the FLOT regi-
men, which included docetaxel 50 (mg/m2), oxaliplatin 80 
(mg/m2), leucovorin 200 (mg/m2), and fluorouracil 2600 
(mg/m2)administered as a continuous 24-hour intra-
venous infusion on day 1, with one cycle every two 
weeks. This was combined with three cycles of sintilimab 
(200  mg, intravenous infusion, day 1, one cycle every 3 
weeks). Following neoadjuvant therapy, radical resec-
tion was performed, and patients received four additional 
cycles of adjuvant therapy using the FLOT regimen. The 
characteristics of the 16 patients are detailed in Table 1.

Peripheral anticoagulant blood (2 mL, 1600  g) was 
collected from each patient before the first and second 
neoadjuvant therapy. Centrifugation was performed for 
15 min to obtain upper plasma and middle white mem-
brane. The upper plasma was carefully drawn and dis-
pensed into 2 mL frozen storage tubes (1 mL/tube) and 
stored at − 80  °C for future use. The Buffy Coat in the 
middle layer was meticulously absorbed and frozen at 
− 80  °C. All the aforementioned procedures were com-
pleted within 2 h of blood collection.

RNA-seq analysis
Total RNA was isolated using Trizol (Invitrogen), fol-
lowed by purification with QIAGEN RNeasy and treat-
ment with RNase-free DNAase (QIAGEN). The process 
encompassed library preparation and sequencing experi-
ments, and the sequencing results were imported into 
ACGT101-miR (LC Sciences, Houston, Texas, USA) for 
analysis. The mRNA and small RNA-seq libraries were 
prepared and used. The analysis process began with the 
removal of 3’ adapters and unwanted sequences to obtain 
clean data. Length screening was performed, retaining 
sequences with base lengths between 18 and 26 nucleo-
tides. The obtained sequences underwent comparison 
with various RNA databases (mRNA, RFam, and Repbase 
databases, excluding miRNA) and were filtered to obtain 
valid data. Subsequently, miRNA identification and dif-
ferentiation analysis were conducted by comparing pre-
cursors and the genome, leading to the final prediction of 
target genes for the different miRNAs. The TruSeq Small 
RNA Sample Preparation Kits (Illumina, San Diego, Ta
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USA) were used to prepare the small RNA sequencing 
library. Thereafter, the constructed library was sequenced 
using Illumina Hiseq2000/2500 with a single-ended read 
length of 1 × 50 bp. The analysis results were determined 
with a significance threshold of P < 0.05. The upregulated 
miRNA statistical map, clustering heat map, and volcano 
map were generated. Finally, differential miRNA target 
genes were predicted andsubjected to enrichment anal-
ysis. Quality control for RNA-seq data was performed 
using FastQC to assess raw read quality, including base 
quality scores, GC content, and sequence length distri-
bution. Low-quality reads and adapter sequences were 
removed using Trimmomatic.

GO and KEGG enrichment analyses were applied to 
identify significantly differentially expressed GO func-
tional entries and KEGG enrichment pathways. GO 
and KEGG enrichment analyses were performed using 
ggplot2 (Version: 3.4.0). The analysis was performed 
using the “ggplot2” package in R, and proteins exceed-
ing the significance threshold were annotated for further 
interpretation. The expression of miRNA was displayed 
using log10(norm value) (log10(0.0001) when the norm 
value is 0). In cases of biological repeats, the norm value 
of different miRNAs was used for miRNA expression dis-
play through the Z-value method. The formula for calcu-
lating the Z value is: Zsample-i = [(norm sample-i)-Mean 
(norm of all samples)]/[Standard deviation(norm of all 
samples)].

Olink immuno-oncology assay
Protein levels were measured by multiplex Proxim-
ity Extension Assay (PEA) (Olink Proteomic, Uppsala, 
Sweden) commercial panel (Immuo-Oncology). Olink 
proteomics relies on PEA technology, enabling the 
simultaneous analysis of 92 inflammation- related bio-
markers. Each target protein was identified using double 
antibodies and coupled with its specific complementary 
DNA barcode. The resulting DNA sequences were then 
detected and quantified using a high-throughput micro-
fluidic real-time PCR instrument (Biomark HD, Fluid-
igm). The obtained data underwent qualitative control 
and normalization using internal extension control and 
interboard control to adjust for in-run and inter-run vari-
ations. Proteins with signal intensities below the detec-
tion limit or with a signal-to-noise ratio (SNR) < 3 were 
excluded. Technical replicates were assessed for consis-
tency, with a Pearson correlation coefficient > 0.95 and a 
coefficient of variation (CV) < 20% considered acceptable. 
The quality of the samples was assessed by evaluating the 
deviation of each sample from the median of the con-
trols. Samples with a deviation of less than 0.3 NPX from 
the median passed the quality control.

A clustering heatmap analysis was conducted to 
uncover distinct patterns of protein expression across the 

samples. Hierarchical clustering was employed to group 
proteins and samples based on their similarity. The heat-
map was created using the R package “pheatmap” (Ver-
sion: 1.0.12), with dendrograms included to illustrate the 
hierarchical relationships between proteins and samples. 
Volcano plot analysis was used to visually represent the 
results of the differential protein expression analysis. 
Receiver Operating Characteristic (ROC) curve analy-
sis was conducted to assess the diagnostic performance 
of the selected biomarkers. The limma package was 
employed to identify differentially expressed proteins, 
with a P-value cutoff of 0.05. The ROC curve was con-
structed using the “pROC” package in R (Version: 1.18.0), 
and the optimal cut-off threshold was identified by maxi-
mizing Youden’s index.

WGCNA analysis and driver gene mining
Using RNA-seq normalized expression data, a weighted 
coexpression network was constructed using Weighted 
gene co-expression network analysis (WGCNA) (version 
1.69) with default parameters. Pearson’s correlation coef-
ficient was employed to assess the correlation between 
gene modules and treatment information within patient 
groups. Subsequently, hub genes were identified based on 
the connectivity of gene modules and their association 
with phenotypic traits within the modules. Module con-
nectivity was defined as the correlation between genes 
and modules (module membership), while clinical feature 
relationship was defined as the absolute value of Pear-
son’s correlation coefficient between each gene and ther-
apeutic information (phenotypic significance). Candidate 
hub genes were screened based on a module membership 
degree > 0.6 and phenotypic significance > 0.6. The final 
hub gene was determined by selecting the common gene 
that met both criteria. Signal pathways enriched by hub 
genes were analyzed using the cluster Profiler package 
(version 3.14.3).

Immunoinfiltration and MiRNA regulatory element
xCell (version 1.1.0) was employed to calculate the pro-
portion of infiltrating immune cells in each sample using 
RNA-Seq standardized expression data. The miRWalk 
database was used to extract regulatory outcomes of 
corresponding target genes exhibiting significant differ-
ences in medium and high expression of miRNA results. 
The Pearson’s correlation coefficient was calculated for 
proteins between the T1 and T2 groups. Proteins with 
an absolute correlation coefficient value greater than or 
equal to 0.5 with target molecules were identified as their 
co-expressed proteins.

Statistical analysis
Normalized Protein Expression (NPX) values were 
utilized for analysis as they approximated a normal 



Page 5 of 13Zhang et al. BMC Cancer          (2025) 25:674 

distribution. The Olink proteomics final analytical read-
ings are expressed as NPX values, followed by log2 con-
version. The volcano plot was generated by plotting the 
negative logarithm of the p-value (log10(p-value)) on the 
y-axis and the log-transformed fold change (log2 fold 
change) on the x-axis. Proteins exhibiting statistically 
significant differential expression (p-value < 0.05) were 
emphasized. The area under the ROC curve (AUC) was 
computed to quantify the sensitivity and specificity of 
the biomarkers in distinguishing between the conditions 
of interest. An AUC value exceeding 0.7 was deemed 
indicative of robust diagnostic accuracy, with values 
approaching 1 reflecting superior discriminatory capabil-
ity. Data are presented as mean ± standard deviation or 
median (first and third quartiles). Statistical analysis was 
performed using SPSS Statistics 25.

The Wilcoxon rank-sum test was used to compare the 
significance of differences in the proportion of infiltrated 
immune cells between groups. Survival analysis of the 
different group was performed using the Kaplan-Meier 
method. Statistically significant difference in the two 
groups was then defined by a log-rank test (Mantel Cox, 
95% CI) of the Kaplan-Meier curves. A P-value < 0.05 was 
considered statistically significant.

Results
Characteristics of the participants
Sixteen patients who met the inclusion criteria par-
ticipated in this study, and the experimental flowchart 

is shown in Fig. 1. As the study design, plasma samples 
from all 16 enrolled patients were selected for Olink 
omics analysis, of which nine patients underwent leu-
kocyte RNA-seq.  A comparison was made between the 
data obtained before and after the first neoadjuvant ther-
apy. The patient characteristics are detailed in Table  1. 
Within this cohort, TRG is a measure of histopathologi-
cal response to neoadjuvant therapy, patients in the T1 
group comprised those with TRG0 and TRG1, while 
those in the T2 group included patients with TRG2 and 
TRG3.

Enrichment of tumor immune-related inflammatory 
pathways
We conducted a correlation analysis of tumor-infiltrat-
ing immune cells in the T1 and T2 groups (Fig.  2A). 
The results revealed that, compared with the T1 group, 
CD8+ T cells and B cells in the T2 group significantly 
decreased, while monocytes and neutrophils significantly 
increased. To elucidate the infiltration of immune cells in 
vivo with the treatment, we further analyzed the T1 and 
T2 groups before and after neoadjuvant therapy, respec-
tively. We found that in the T1 group, CD4+ T cells and 
monocytes were higher after treatment than before treat-
ment. The number of CD8+ T cells increased and the 
number of B cells decreased in T2 group after treatment 
compared with before treatment. Overall, compared 
with the T1 group, the number of B cells decreased, and 
the number of neutrophils increased in the T2 group, as 

Fig. 1 Schematic of experimental workflow. BF: Before Treatment, AF: After Treatment
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shown in Fig. 2B. In addition, we employed complemen-
tary approaches, including TIMER, CIBERSORT, and 
Consensus methods (Supplementary Fig.  1). The results 
derived from these methods were consistent with the 
xCell analysis, demonstrating comparable CD8 + T cell 
enrichment patterns.

Based on miRNA data, the highest enrichment scores 
for the T1 and T2 groups were 0.59 (P = 0.009) and 0.62 
(P = 0.006), respectively (Fig. 2C). GO enrichment analy-
sis was conducted on the expression of significantly dif-
ferent genes in the respective groups. The pathways 
associated with inflammatory response and myeloid 
leukocyte activation exhibited the most significant dif-
ferences (Fig.  2D). To further investigate the function 
of differentially expressed proteins, we conducted GO 
enrichment analysis in different contexts. The results 
revealed that the differential proteins were enriched in 
cell activation, response to cytokine, the cytokine-medi-
ated signaling pathway, and T cell activation, lymphocyte 
activation was enriched after treatment but not before 
treatment (Fig. 2E).

Upon analyzing RNA-seq data, the inflammatory 
pathway emerged as the most significantly different in 
the T1 and T2 groups. Furthermore, we analyzed the 
expression of 92 proteins related to tumor immunity in 
different groups using Olink proteomics. GO and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analysis showed that these proteins were enriched 
in various inflammatory responses, immune responses 
and chemokine activities (Fig.  3A), with several path-
ways, such as the cytokine − cytokine receptor interac-
tion, chemokine signaling pathway, and TNF signaling 
pathway (Fig. 3B).

Key molecular biomarkers were associated with immune 
infiltration
Pearson’s correlation analysis revealed the interaction 
of 57 proteins after treatment (Supplementary Fig.  2). 
Seven related proteins with the most noticeable differ-
ences were identified between the T1 and the T2 group, 
including Angiopoietin 2 (ANGPT2), PGF, C-X3-C motif 
chemokine ligand 1 (CX3CL1), TNFRSF21, C-X-C motif 
chemokine ligand 10 (CXCL10), C-X-C motif chemokine 
ligand 9 (CXCL9), and Granzyme B (GZMB). Compared 
to the T2 group, these seven different proteins were sig-
nificantly downregulated in the T1 group (Fig.  4A-B). 
ROC curve results demonstrated that the AUC of PGF, 
IL33, TNFRSF21, IL15, and IFN-gamma were all > 0.8, 
the AUC values of PGF was 0.9143 (Fig. 4C). To further 
observe the potential role of the related molecules, we 
analyzed the data of 12 patients before and after neo-
adjuvant therapy (Fig.  4D). The results revealed that 

Fig. 2 The analysis of protein expression and related signaling pathways in different groups. (A) Relationship between total T1 and T2 expression and pro-
portion of immune cells. (B) Relationship between expression and proportion of immune cells in T1 and T2 groups before and after treatment. (C) WGCNA 
results show the gene modules in distinct treatment response phenotype. Columns represent treatment response phenotype. The color change from 
blue to red indicates a low to high correlation between gene module and cell subtypes (Pearson’s correlation test). (D) Dot plot showing the GO enrich-
ment analysis results using the hub genes in different response groups. Colors from blue to red indicate the Log10(P-value + 1) low to high (clusterProfiler). 
(E) GO enrichment analysis based on the background of 92 inflammation-related proteins. BF: Before Treatment, AF: After Treatment
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Fig. 4 Differential protein biomarkers associated with inflammation between the T1 and T2 groups. (A) Heatmaps of seven differentially expressed pro-
teins in T1 and T2 groups before treatment. (B) Volcanic visualization of seven inflammation-related biomarkers in T1 and T2 groups before treatment. (C) 
ROC plotsin T1 and T2 groups before treatment (PGF, IL33, TNFRSF21, IL15, and IFN-gamma). (D) Heatmap of seven differentially expressed proteins before 
treatment (BF) and after treatment (AF). (E) Volcanic visualization of seven inflammation-related biomarkers in T1 and T2 groups after treatment. (F) ROC 
plotsin T1 and T2 groups after treatment (PGF, CXCL9, MMP7, TNFRSF21, and ANGPT2). (G) Heatmaps of five differentially expressed proteins in T1 and 
T2 groups before and after treatment. (H) Volcanic visualization of five inflammation-related biomarkers in T1 and T2 groups. (I) ROC curves of T1 and T2 
groups before and after treatment (CD8A, MCP-3, CCL20, IL10, MUC-16). BF: Before Treatment, AF: After Treatment

 

Fig. 3 Olink proteomic analysis of tumor immune-related proteins. (A) GO enrichment analysis based on the background of all annotated proteins. (B) 
KEGG enrichment analysis based on the background of all annotated proteins
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compared with before treatment, some proteins such 
as TNFRSF21 and PGF were also highly expressed after 
treatment. Figure  4E–F shows the volcano maps and 
ROC curves of the T1 and T2 groups after neoadjuvant 
therapy, wherein the Area under curve (AUC) values of 
TNFRSF21 and PGF were both 0.8833. Further cluster 
analysis was conducted on relevant differential proteins 
in the T1 and T2 groups before and after neoadju-
vant therapy. The results indicated that compared with 
the T1 group, the CD8A protein expressions in the T2 
group were decreased, the AUC values of the top three 
were CD8A(1.000), CCL20(0.967), and MUC-16(0.933) 
respectively (Fig. 4G–I).

These pathways may be linked to neoadjuvant therapy 
and prognosis in different groups. Simultaneously, heat-
maps were generated for the relevant mRNA of samples 
from the T1 and T2 groups before neoadjuvant therapy, 
revealing 68 differentially expressed inflammation-related 
genes between them. Among these, 50 differentially 
expressed genes were downregulated in the T2 group 
compared to the T1 group, while 18 genes, including hsa-
let-7f-2-3p_1ss22CT, hsa-miR-3665-p5_1ss17AG, mmu-
miR-5126_L- 1_1ss18CTl, were upregulated. Notably, 
hsa-miR-1278_R-2, hsa-miR-548aa-1-p3_1ss 19TG, and 
hsa-miR-125b-5p_R-1 were also included (Supplemen-
tary Fig. 3A). A volcano map was generated to visualize 
the overall distribution of different miRNAs (Supple-
mentary Fig.  3D). Additionally, differences in CircRNA 
and LncRNA were analyzed in the T1 group (No.3, No.6, 
No.10, No.12) and T2 group (No.1, No.7, No.9, No.13, 
No.16). Compared with the T1 group, the most signifi-
cantly increased circRNA was circRNA15735, and the 
most decreased was hsa_circ_0007313 in the T2 group 
(Supplementary Fig. 3B-C, E-F).

Expression and prognostic value of CD8A and PGF in 
gastric cancer
Box plots were generated to describe the expression 
of two different prognostic proteins in the T1 and T2 
groups (Figs.  5A-B), the expression of CD8A in T1 
group was significantly higher than that in T2 group, 
while the expression level of PGF in T2 group was sig-
nificantly increased. The prognostic value of differentially 
expressed genes in gastric cancer was assessed through 
Kaplan–Meier survival analysis, using complete mRNA 
transcriptomics data from The Cancer Genome Atlas 
(TCGA). It showed that high expressions of CD8A was 
associated with a favorable prognosis in patients with 
gastric cancer, with logrank P-value < 0.05 (Fig.  5C). 
Conversely, high expression of PGF was associated with 
a poor prognosis in patients with gastric cancer, with 
logrank P-value < 0.05 (Fig. 5D).

Analysis of Immunoinfiltration and interaction between 
CD8 and PGF
Figure 6A–B illustrates the coexpression network before 
and after treatment. Proteins associated with CD8A and 
PGF before treatment included IL8, CX3CL1, GZMH, 
VEGFA, TNF, and CCL3. After treatment, the proteins 
associated with both were TNF, IL15, TNFRSF12A, 
MMP12, HGF, CX3CL1 and IL18. Three proteins, TNF, 
CX3CL1 and IL8, were involved both before and after 
treatment. CD8A was positively correlated with mono-
cytes, macrophages, TNK cells, CD8 cells, dendritic cells, 
and negatively correlated with MDSC, while PGF was 
positively correlated with MDSC and TNK cells (Fig. 6C). 
In addition, miRNAs with medium and high expression 
levels were selected and the regulatory results of corre-
sponding target genes were analyzed through miRWalk 
database mining (Fig. 6D).

Discussion
Analyzing protein expression in peripheral blood offers 
a minimally invasive and accessible approach for moni-
toring biomarkers during neoadjuvant immunotherapy. 
Tumor biomarker levels play a crucial role in detecting 
disease recurrence in cancer patients. Established bio-
markers, including PSA, CEA, CA19-9, and CA72-4, 
are routinely utilized to assess the recurrence of gastric 
cancer [13, 14]. However, there are few indicators that 
can predict the efficacy of neoadjuvant therapy for gas-
tric cancer. To our knowledge, this is the first study ana-
lyzing changes in plasma protein levels before and after 
neoadjuvant immunotherapy for gastric cancer. We 
identified two potential markers with distinct prognos-
tic significance within the gastric cancer immunotherapy 
neoadjuvant clinical trial cohort. Notably, CD8A exhib-
ited increased expression in the T1 group after neoad-
juvant therapy and were positively correlated with the 
efficacy of immunoinfiltrating cells, including mono-
cytes, macrophages, TNK cells, CD8 cells. Conversely, 
the expression of PGF demonstrated significant increased 
in the T2 group, correlating with the tumor regression 
grade of neoadjuvant therapy.

CD8A, a member of the T cytotoxic pathway-related 
genes, encodes the CD8 antigen, a cell surface glycopro-
tein found on most cytotoxic T cells. The CD8 antigen 
functions as a coreceptor with the T-cell receptor, facili-
tating the recognition of antigens presented by antigen-
presenting cells in the context of class I MHC molecules. 
CD8A expression may be a useful and measurable predic-
tive marker of immunotherapeutic response and immune 
cell infiltration [15]. A previous study for pan-cancer has 
reported that high level of CD8A in conjunction with 
high expression of PD-L1 might be used to predict the 
immunotherapeutic response [16]. Previous studies also 
revealed the protective role of CD8A in the prognoses of 
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hepatocellular carcinoma, metastatic melanoma, head 
/ neck squamous cell carcinoma and bladder carcinoma 
[17–19]. However, few studies have clarified the associa-
tion between CD8A and immunotherapeutic response 
in gastric cancer. Therefore, we further investigated the 
prognostic value of CD8A in cancer patients treated with 
immunotherapy in TCGA dataset. Our results showed 
that low CD8A expression was associated with poor 
survival outcomes among cancer patients treated with 
immunotherapy. Thus, CD8A can serve not only a use-
ful prognostic factor in gastric cancer patients but also 
a predictive marker of immunotherapeutic response in 
cancer patients treated with immunotherapy.

A growing body of evidence suggested the involvement 
of growth factors in the development of various malig-
nancies, including gastric cancer [20–22]. Growth factors 

and their receptors, cell-cycle regulators, cell-adhesion 
molecules and matrix-degrading enzymes are those to be 
used as prognostic factors, including epidermal growth 
factor (EGF), EGF receptor, vascular endothelial growth 
factor (VEGF), et al. [22]. Such as c-type lectin domain 
family 11 member A (CLEC11A), have been identified 
as potential prognostic and immunological biomarkers 
in gastric cancer, playing a significant role in tumor pro-
gression, modulation of the immune microenvironment, 
and therapeutic response, thereby providing valuable 
insights for the development of personalized treatment 
strategies [23]. PGF is well known as a member of the 
VEGF family, which is active in angiogenesis and endo-
thelial cell growth, exerting an effect on its proliferation 
and migration. PGF has been reported as a potent stimu-
lator in cancer invasion by activating angiogenesis [24]. 

Fig. 5 Biomarkers of different proteins associated with T1 and T2 groups. (A–B) Expression of CD8A and PGF protein in T1 and T2 groups. (C–D) Kaplan–
Meier survival analysis was used to evaluate the prognostic value of differentially expressed genes in CD8A and PGF
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In addition, the overexpression of PGF is correlated with 
tumor stage, cancer progression and metastasis [25–27]. 
In colorectal cancer, Kaplan–Meier curve analysis has 
showed that higher expression of the PGF gene is asso-
ciated with a lower survival rate, and in vitro expression 
of PGF aligns with bioinformatics results [28]. Our study 
similarly found that PGF was markedly overexpressed in 
gastric cancer, functioning as a molecule with oncogenic 
properties.

Our study revealed that, CD4 + T cells and mono-
cytes increased in the T1 group after treatment, while 
CD8 + T cells and B cells decreased in the T2 group after 
treatment. The use of immune cell infiltration as a novel 
biomarker for predicting the prognosis of patients with 
various types of cancer holds great promise [29, 30]. 
While previous reports have implicated immune infil-
tration in affecting tumor patient prognosis [31–33], 
the interaction mechanism between prognosis and the 

tumor microenvironment remains incompletely under-
stood. Neutrophils play a pivotal role in tumor forma-
tion and metastasis, exhibiting a dual role in inhibiting 
and promoting cancer [34, 35]. The mechanism of can-
cer progression is intricately linked to inflammation. Our 
evaluation of immune cell expression in different tumor 
microenvironments revealed higher expression levels of 
monocytes and neutrophils in the T2 group compared 
to the T1 group. Additionally, the infiltration of CD8+ 
T cells, NK cells, and B cells was lower in the T2 group, 
whereas memory CD4+ T cells increased in both groups. 
Elevated leukocyte levels in the blood significantly cor-
relate with short survival and cancer cell metastasis in 
patients with non-hematologic malignancies, primarily 
attributed to an increase in mature polymorphonuclear 
cells [36]. B cells play a crucial role in humoral immu-
nity, inhibiting the progression of tumor cells by secret-
ing immunoglobulin and promoting T cell responses [37, 

Fig. 6 Mechanism analysis of CD8A and PGF. (A–B) Gene coexpression network analysis of the inflammation-related differentially expressed proteins. (C) 
Heatmap of the correlation between the expression of four response-favorable genes and immune cells using the expression data in TCGA. (D) Network 
illustrates the potential miRNA-regulated networks associated with four response-favorable genes. Genes are represented by red dots and mirnas are 
represented by green dots. The blue line indicates the inhibitory relationship between the mirna and its target gene, while the red line indicates the 
promoting relationship
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38]. The heightened presence of inflammatory cells can 
induce the production and secretion of various chemo-
kines and cytokines, serving as inflammatory mediators 
that recruit more inflammatory cells to the tumor micro-
environment, thereby exacerbating a vicious cycle.

Based on existing research, gastric cancer patients with 
high CD8A expression may demonstrate increased sen-
sitivity to PD-1 inhibitors [39]. PGF plays a crucial role 
in tumor angiogenesis and immune suppression [40–42]. 
This study reveals that elevated PGF expression correlates 
with poor prognosis in gastric cancer patients, suggest-
ing its potential as a therapeutic target for anti-angio-
genic treatment. Future investigations could explore the 
relationship between PGF expression levels and the effi-
cacy of anti-angiogenic therapies, thereby offering more 
precise treatment options for gastric cancer patients. 
Furthermore, the combination of CD8A and PGF may 
provide a more comprehensive prognostic assessment 
and therapeutic guidance for gastric cancer patients. By 
integrating genomic, transcriptomic, and proteomic data, 
further exploration of the interactions between CD8A, 
PGF, and other molecular markers could facilitate the 
development of more accurate predictive models. In the 
future, prospective clinical trials based on CD8A and 
PGF expression levels could be designed to evaluate their 
predictive value in gastric cancer immunotherapy, anti-
angiogenic therapy, or combination therapies. Addition-
ally, CD8A, as a universal marker of T cell activity, may 
also possess predictive value in other immunotherapy-
sensitive cancer types, such as melanoma [43], non-small 
cell lung cancer [44], and colorectal cancer [45]. PGF is 
associated with angiogenesis and tumor progression in 
various solid tumors, including breast cancer [46], liver 
cancer [47], and pancreatic cancer [24]. Consequently, 
PGF may serve as a pan-cancer prognostic marker and 
therapeutic target.

To facilitate the broader clinical application and vali-
dation of CD8A and PGF, we will develop standardized 
ELISA detection methods. Utilizing the Human ELISA 
Kit, we aim to measure the expression levels of CD8A 
and PGF both prior to and following neoadjuvant ther-
apy. Furthermore, we will rigorously assess the stability 
and reproducibility of these biomarkers across various 
gastric cancer subtypes. According to the results of this 
study, when treated with neoadjuvant immunotherapy 
using sintilimab in combination with FLOT protocol 
of gastric cancer patients, we can detect the expression 
levels of CD8A and PGF before and after neoadjuvant 
therapy. This approach facilitates the assessment and pre-
diction of potential therapeutic responses. Furthermore, 
it is recommended to establish a systematic protocol for 
post-treatment blood monitoring (e.g., at 3–6 month 
intervals) to enhance the predictive capacity for disease 
progression.

The present study has some limitations. First, we did 
not sequence tissue samples in the tumor microenviron-
ment, which will require additional mechanistic analysis 
in the future. Second, the number of gastric/gastroesoph-
ageal samples in our center is limited. It is necessary to 
increase the healthy control group, and a larger cohort 
of gastric adenocarcinoma patients with control group, 
pre- and post-operative RNA sequences need to be col-
lected to further evaluate the performance of gastric 
adenocarcinoma models in predicting the expression of 
these molecules. In future studies, we will employ mul-
tivariate analysis or stratified analysis to control for con-
founding factors such as age, gender, lifestyle habits, and 
comorbidities, thereby further ensuring the stability and 
broader applicability of the current results.

Conclusions
Our study conducted a comprehensive assessment of 
potential carcinogenic pathways, revealing novel associa-
tions related to the diagnosis and prognosis of gastric and 
gastroesophageal cancers. Our data suggest that neoad-
juvant therapy efficacy may be reflected by alterations in 
specific proteins, offering potential etiological and clini-
cal implications. The molecular aspects of tumor regres-
sion after neoadjuvant chemotherapy are currently under 
investigation, and our findings indicate that the prom-
ising candidate markers CD8A and PGF are strongly 
associated with immune invasion, potentially provid-
ing novel treatment strategies for patients with gastric 
adenocarcinoma.
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